Phương trình sau đây có bao nhiêu nghiệm\[\left( {{x^2} - 4} \right)\left( {{{\log }_2}x + {{\log }_3}x + {{\log }_4}x + ... + {{\log }_{19}}x - \log _{20}^2x} \right) = 0\]
A.1
B.2
C.3
D.4
\[({x^2} - 4)({\log _2}x + {\log _3}x + {\log _4}x + ... + {\log _{19}}x - \log _{20}^2x) = 0( * )\]
Đkxđ: x>0
\(\left( * \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2(tm)}\\{x = - 2(ktm)}\\{{{\log }_2}x + {{\log }_3}x + {{\log }_4}x + ... + {{\log }_{19}}x - \log _{20}^2x = 0\left( {**} \right)}\end{array}} \right.\)
\[( * * ) \Leftrightarrow \frac{{logx}}{{log2}} + \frac{{logx}}{{log3}} + \frac{{logx}}{{log4}} + ... + \frac{{logx}}{{log19}} - {\left( {\frac{{logx}}{{log20}}} \right)^2}\]
\[( * * ) \Leftrightarrow \frac{{logx}}{{log2}} + \frac{{logx}}{{log3}} + \frac{{logx}}{{log4}} + ... + \frac{{logx}}{{log19}} - {\left( {\frac{{logx}}{{log20}}} \right)^2}\]
\[ \Leftrightarrow logx\left( {\frac{1}{{log2}} + \frac{1}{{log3}} + \frac{1}{{log4}} + ... + \frac{1}{{log19}} - \frac{{logx}}{{lo{g^2}20}}} \right)\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{logx = 0}\\{\frac{1}{{log2}} + \frac{1}{{log3}} + \frac{1}{{log4}} + ... + \frac{1}{{log19}} - \frac{{logx}}{{lo{g^2}20}} = 0}\end{array}} \right.\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{\frac{1}{{log2}} + \frac{1}{{log3}} + \frac{1}{{log4}} + ... + \frac{1}{{log19}} = \frac{{logx}}{{lo{g^2}20}}}\end{array}} \right.\]
\[\begin{array}{l} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{\left( {\frac{1}{{log2}} + \frac{1}{{log3}} + \frac{1}{{log4}} + ... + \frac{1}{{log19}}} \right)lo{g^2}20 = \log x}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1\left( {tm} \right)}\\{x = {{10}^{\left( {\frac{1}{{log2}} + \frac{1}{{log3}} + \frac{1}{{log4}} + ... + \frac{1}{{log19}}} \right)lo{g^2}20}}\left( {tm} \right)}\end{array}} \right.\end{array}\]
Phương trình (*) có 3 nghiệm.
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Giải phương trình \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]
Cho các số thực dương a,b,c khác 1 thỏa mãn
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].
Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?
Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:
Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:
Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)
Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]
Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].
Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Hỏi có bao nhiêu giá trị m nguyên trong đoạn \[\left[ { - 2017;2017} \right]\;\]để phương trình \[logmx = 2log(x + 1)\;\;\] có nghiệm duy nhất?
Cho x,y là các số thực dương thỏa mãn \[lo{g_2}\frac{{3x + 3y + 4}}{{{x^2} + {y^2}}} = (x + y - 1)(2x + 2y - 1) - 4\left( {xy + 1} \right)\] Giá trị lớn nhất của biểu thức \[P = \frac{{5x + 3y - 2}}{{2x + y + 1}}\;\] bằng:
Tìm m để phương trình \[mln(1 - x) - lnx = m\] có nghiệm \[x \in \left( {0;1} \right)\]