Đặt \[a = {\log _3}4,b = {\log _5}4\]. Hãy biểu diễn \[lo{g_{12}}80\] theo a và b
A.\[{\log _{12}}80 = \frac{{2{a^2} - 2ab}}{{ab + b}}\]
B.\[{\log _{12}}80 = \frac{{a + 2ab}}{{ab}}\]
C. \[{\log _{12}}80 = \frac{{a + 2ab}}{{ab + b}}\]
D. \[{\log _{12}}80 = \frac{{2{a^2} - 2ab}}{{ab}}\]
Ta có\[80 = {4^2}.5;12 = 3.4\]
\[\begin{array}{*{20}{l}}{{{\log }_{12}}80 = {{\log }_{12}}{4^2} + {{\log }_{12}}5 = 2{{\log }_{12}}4 + {{\log }_{12}}5 = \frac{2}{{{{\log }_4}12}} + \frac{1}{{{{\log }_5}12}} = \frac{2}{{{{\log }_4}3 + 1}} + \frac{1}{{{{\log }_5}3 + {{\log }_5}4}}}\\{ = \frac{2}{{\frac{1}{a} + 1}} + \frac{1}{{\frac{b}{a} + b}} = \frac{{2a}}{{a + 1}} + \frac{a}{{b\left( {a + 1} \right)}} = \frac{{2ab + a}}{{ab + b}}}\end{array}\]
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho biểu\[P = \,{(\ln a\, + {\log _a}e)^2}\, + {\ln ^2}a - \log _a^2e\], với a là số dương khác 1. Mệnh đề nào dưới đây đúng ?
Cho lnx=2. Tính giá trị của biểu thức \[T = 2ln\sqrt {ex} - ln\frac{{{e^2}}}{{\sqrt x }} + ln3.lo{g_3}e{x^2}\] ?
Với các số thực a,b>0 bất kì; rút gọn biểu thức \(P = 2{\log _2}a - {\log _{\frac{1}{2}}}{b^2}\)
Cho \[a > 0,\,\,b > 0\] và \[ln\frac{{a + b}}{3} = \frac{{2lna + lnb}}{3}\]. Chọn mệnh đề đúng trong các mệnh đề sau:
Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
Biết \[{\log _{15}}20 = a + \frac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\] với a\[a,b,c \in \mathbb{Z}\]. Tính \[T = a + b + c\]