IMG-LOGO

Câu hỏi:

15/07/2024 172

Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right) = {x^2} - 1\], trục hoành và hai đường thẳng x=−1;x=−3 là:

A.\[S = \mathop \smallint \limits_{ - 3}^{ - 1} \left| {{x^2} - 1} \right|dx\]

Đáp án chính xác

B. \[S = \mathop \smallint \limits_{ - 1}^{ - 3} \left| {{x^2} - 1} \right|dx\]

C. \[S = \mathop \smallint \limits_{ - 3}^0 \left| {{x^2} - 1} \right|dx\]

D. \[S = \mathop \smallint \limits_{ - 3}^{ - 1} \left( {1 - {x^2}} \right)dx\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số\[y = f\left( x \right) = {x^2} - 1\]  trục hoành và hai đường thẳng \[x = - 1;x = - 3\] là:\[S = \mathop \smallint \limits_{ - 3}^{ - 1} \left| {{x^2} - 1} \right|dx\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đồ thị hàm số y=f(x) như hình vẽ dưới đây. Diện tích S của hình phẳng (phần gạch chéo) được xác định bởi

Xem đáp án » 07/09/2022 1,653

Câu 2:

Diện tích hình phẳng giới hạn bởi nửa đường tròn \[{x^2} + {y^2} = 2,y > 0\] và parabol \[y = {x^2}\;\] bằng:

Xem đáp án » 07/09/2022 879

Câu 3:

Cho hàm số \[y = {x^4} - 3{x^2} + m\] có đồ thị là (Cm) (m là tham số thực). Giả sử (Cm) cắt trục Ox tại 4 điểm phân biệt. Gọi \[{S_1},{S_2}\;\] là diện tích của hai hình phẳng nằm dưới trục Ox và S3 là diện tích của hình phẳng nằm trên trục Ox được tạo bởi (Cm) với trục Ox. Biết rằng tồn tại duy nhất giá trị \[m = \frac{a}{b}\] (với \[a,b \in {\mathbb{N}^*}\;\] và tối giản) để \[{S_1} + {S_2} = {S_3}\]. Giá trị của 2a−b bằng:

Cho hàm số y = x^4 − 3 x^2 + m   có đồ thị là (Cm) (m là tham số thực). Giả sử (Cm) cắt trục Ox tại 4 điểm phân biệt. Gọi  S 1 , S 2  là diện tích của hai hình phẳng nằm dưới trục Ox và S3 là diện tích của hình phẳng nằm trên trục Ox được tạo bởi (Cm) với trục Ox. Biết rằng tồn tại duy nhất giá trị  m = a/b  (với  a , b ∈ N ∗  và tối giản) để  S 1 + S 2 = S 3 . Giá trị của 2a−b bằng: (ảnh 1)

Xem đáp án » 07/09/2022 257

Câu 4:

Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right),y = g\left( x \right)\] và hai đường thẳng \[x = a,x = b(a < b)\;\] là:

Xem đáp án » 07/09/2022 231

Câu 5:

Cho hai hàm số \[f\left( x \right) = m{x^3} + n{x^2} + px - \frac{5}{2}\left( {m,n,p \in \mathbb{R}} \right)\]và\(g\left( x \right) = {x^2} + 3x - 1\) có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là −3;−1;1( tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f(x)và g(x) bằng

Cho hai hàm số f(x)=mx^3+nx^2+px− 5/2   (m,n,p thuộc R)vàg(x)=x^2+3x−1 có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là −3;−1;1( tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f(x)và g(x) bằng (ảnh 1)

Xem đáp án » 07/09/2022 227

Câu 6:

Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \[y = {x^2} - 4\;\] và \[y = x - 4\]

Xem đáp án » 07/09/2022 204

Câu 7:

Gọi S  là diện tích hình phẳng giới hạn bởi các đường  \[y = {x^3},y = 2 - x\]và y = 0. Mệnh đề nào sau đây là đúng?

Xem đáp án » 07/09/2022 192

Câu 8:

Cho parabol \[\left( P \right):y = {x^2} + 1\]và đường thẳng \[(d):y = mx + 2\]. Biết rằng tồn tại m để diện tích hình phẳng giới hạn bới (P)  và (d)  đạt giá trị nhỏ nhất, tính diện tích nhỏ nhất đó.

Xem đáp án » 07/09/2022 189

Câu 9:

Cho hai hàm số \[f(x) = - x\;\] và \[g(x) = {e^x}\]. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \[y = f(x),y = g(x)\;\] và hai đường thẳng x=0,x=e là:

Xem đáp án » 07/09/2022 186

Câu 10:

Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x), đường thẳng y=0 và hai đường thẳng \[x = a,x = b(a < b)\] là:

Xem đáp án » 07/09/2022 172

Câu 11:

Cho hàm số f(x) có đồ thị trên đoạn \[\left[ { - 3;3} \right]\;\]là đường gấp khúc ABCD như hình vẽ.

Tính \[\mathop \smallint \limits_{ - 3}^3 f\left( x \right)dx\]

Cho hàm số f(x) có đồ thị trên đoạn  (ảnh 1)

Xem đáp án » 07/09/2022 172

Câu 12:

Tìm diện tích hình phẳng giới hạn bởi các đường \[y = (x - 1){e^x}\], trục hoành, đường thẳng x=0 và x=1

Xem đáp án » 07/09/2022 164

Câu 13:

Đề thi THPT QG - 2021 - mã 101

Cho hàm số \[f(x) = {x^3} + a{x^2} + bx + c\;\] với a,b,c là các số thực. Biết hàm số \[g(x) = f(x) + f\prime (x) + f\prime \prime (x)\;\] có hai giá trị cực trị là −3 và 6. Diện tích hình phẳng giới hạn bởi các đường \[y = \frac{{f(x)}}{{g(x) + 6}}\;v\`a \;y = 1\] bằng

Xem đáp án » 07/09/2022 162

Câu 14:

Diện tích hình phẳng giới hạn bởi các đồ thị hàm số \[y = {x^3} - x;y = 2x\] và các đường thẳng \[x = - 1;x = 1\;\] được xác định bởi công thức:

Xem đáp án » 07/09/2022 160

Câu 15:

Tính diện tích hình phẳng giới hạn bởi hai đường: \[y = \left| {{x^2} - 4x + 3} \right|\,\,\,;\,\,y = x + 3\]

Xem đáp án » 07/09/2022 157

Câu hỏi mới nhất

Xem thêm »
Xem thêm »