Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]
A.\(\left\{ {\begin{array}{*{20}{c}}{x = - \frac{1}{7}}\\{y = - \frac{4}{7}}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{4}{7}}\\{y = \frac{1}{7}}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = - \frac{4}{7}}\\{y = \frac{1}{7}}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\end{array}} \right.\)
Ta có:
\[\begin{array}{l}3x + y + 5xi = 2y - (x - y)i\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3x + y = 2y}\\{5x = - (x - y)}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3x - y = 0}\\{6x - y = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\end{array}} \right.\end{array}\]
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho số phức z có tích phần thực và phần ảo bằng 625. Gọi a là phần thực của số phức \[\frac{z}{{3 + 4i}}\]. Giá trị nhỏ nhất của |a| bằng:
Có bao nhiêu số phức z thỏa mãn \[|z| = 1\;\]và \[\mid {z^3} + 2024z + \overline z \mid - 2\sqrt 3 \mid z + \overline z \mid = 2019\]
Cho số phức z thỏa mãn \[2iz + \overline z = 1 - i.\]Phần thực của số phức z là:
Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:
Xét số phức z thỏa mãn \[\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \]. Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \[\left| {z - 1 + i} \right|.\]Tính P=m+M.
Có bao nhiêu số phức \[z = a + bi\] với a,b tự nhiên thuộc đoạn \[\left[ {2;9} \right]\;\]và tổng a+b chia hết cho 3?
Cho số phức \[z = 3 - 2i\]. Tìm phần thực và phần ảo của số phức \(\overline z \)
Tính môđun của số phức \[w = {\left( {1 - i} \right)^2}z\], biết số phức z có môđun bằng m.
Trên C phương trình \[\frac{2}{{z - 1}} = 1 + i\;\] có nghiệm là:
Cho \[{z_1} = 2 + i;\,\,{z_2} = 1 - 3i.\]. Tính \[A = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\]