Cho số phức z thỏa mãn \[2iz + \overline z = 1 - i.\]Phần thực của số phức z là:
A.−2
B.3
C.1
D.−1
Đặt\[z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right) \Rightarrow \bar z = a - bi\]
Khi đó ta có:
\[2iz + \overline z = 1 - i\]
\[ \Leftrightarrow 2i(a + bi) + a - bi = 1 - i\]
\[ \Leftrightarrow 2ai - 2b + a - bi = 1 - i\]
\[ \Leftrightarrow (a - 2b) + (2a - b)i = 1 - i\]
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a - 2b = 1}\\{2a - b = - 1}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = - 1}\end{array}} \right.\)
\[ \Rightarrow z = - 1 - i\]
Vậy phần thực số phức z là −1.
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho số phức z có tích phần thực và phần ảo bằng 625. Gọi a là phần thực của số phức \[\frac{z}{{3 + 4i}}\]. Giá trị nhỏ nhất của |a| bằng:
Có bao nhiêu số phức z thỏa mãn \[|z| = 1\;\]và \[\mid {z^3} + 2024z + \overline z \mid - 2\sqrt 3 \mid z + \overline z \mid = 2019\]
Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]
Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:
Cho số phức \[z = 3 - 2i\]. Tìm phần thực và phần ảo của số phức \(\overline z \)
Xét số phức z thỏa mãn \[\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \]. Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \[\left| {z - 1 + i} \right|.\]Tính P=m+M.
Có bao nhiêu số phức \[z = a + bi\] với a,b tự nhiên thuộc đoạn \[\left[ {2;9} \right]\;\]và tổng a+b chia hết cho 3?
Tính môđun của số phức \[w = {\left( {1 - i} \right)^2}z\], biết số phức z có môđun bằng m.
Trên C phương trình \[\frac{2}{{z - 1}} = 1 + i\;\] có nghiệm là:
Cho \[{z_1} = 2 + i;\,\,{z_2} = 1 - 3i.\]. Tính \[A = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\]