Cho số phức z có điểm biểu diễn nằm trên đường thẳng \[3x - 4y - 3 = 0,\left| z \right|\;\]nhỏ nhất bằng.
A.\[\frac{1}{5}\]
B. \[\frac{3}{5}\]
C. \[\frac{4}{5}\]
D. \[\frac{2}{5}\]
Giả sử\[z = x + yi\] ta có\[3x - 4y - 3 = 0\]suy ra\[y = \frac{3}{4}\left( {x - 1} \right)\]
Ta có
\[\begin{array}{l}|z| = \sqrt {{x^2} + {y^2}} = \sqrt {{x^2} + \frac{9}{{16}}{{(x - 1)}^2}} = \frac{1}{4}\sqrt {16{x^2} + 9{{(x - 1)}^2}} \\ = \frac{1}{4}\sqrt {25{x^2} - 18x + 9} = \frac{1}{4}\sqrt {{{\left( {5x - \frac{9}{5}} \right)}^2} + \frac{{144}}{{25}}} \ge \frac{1}{4}.\frac{{12}}{5} = \frac{3}{5}\end{array}\]
Dấu “=” xảy ra khi\[x = \frac{9}{{25}}\]và\[y = - \frac{{12}}{{25}}\]
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho số phức z thỏa mãn\[\left| {z - 1 - 2i} \right| = 4\]. Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \[\left| {z + 2 + i} \right|.\]Tính \[S = {M^2} + {m^2}\]
Cho số phức z thoả \[\left| {z - 3 + 4i} \right| = 2\;\]và \[w = 2z + 1 - i\]. Khi đó \[\left| w \right|\] có giá trị lớn nhất là:
Cho số phức z thỏa mãn \[\left| {{z^2} - i} \right| = 1\]. Tìm giá trị lớn nhất của \(\left| {\overline z } \right|\)
Đề thi THPT QG - 2021 - mã 101
Xét các số phức z,w thỏa mãn \[\left| z \right| = 1\;\]và \[\left| w \right| = 2\]. Khi \[\left| {z + i\overline {\rm{w}} - 6 - 8i} \right|\] đạt giá trị nhỏ nhất, \[\left| {z - w} \right|\;\] bằng?
Cho số phức z có \[\left| z \right| = 2\;\]thì số phức \[w = z + 3i\;\] có mô đun nhỏ nhất và lớn nhất lần lượt là
Tìm giá trị nhỏ nhất của \[\left| z \right|,\]biết rằng z thỏa mãn điều kiện \[\left| {\frac{{4 + 2i}}{{1 - i}}z - 1} \right| = 1.\]
Với hai số phức bất kì \[{z_1},{z_2}\], khẳng định nào sau đây đúng:
Xác định số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = \sqrt 2 \] mà \[\left| z \right|\;\]đạt giá trị lớn nhất.
Cho số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = 1\]. Số phức z−i có mô đun nhỏ nhất là:
Tìm giá trị lớn nhất của \[\left| z \right|,\]biết rằng z thỏa mãn điều kiện \[\left| {\frac{{ - 2 - 3i}}{{3 - 2i}}z + 1} \right| = 1\].
Cho số phức z thỏa mãn \[\left| {z + 3} \right| + \left| {z - 3} \right| = 10.\]Giá trị nhỏ nhất của \[\left| z \right|\;\]là:
Trong các số phức z thỏa mãn \[\left| {z + 3 + 4i} \right| = 2\;\], gọi \[{z_0}\] là số phức có mô đun nhỏ nhất. Khi đó:
Cho \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1} - {z_2}} \right| = 1\;\]và \[\left| {{z_1} + {z_2}} \right| = 3\]. Tính \[maxT = \left| {{z_1}} \right| + \left| {{z_2}} \right|\;\]
Trong số các số phức z thỏa mãn điều kiện \[\left| {z - 4 + 3i} \right| = 3\], gọi \[{z_0}\] là số phức có mô đun lớn nhất. Khi đó \[\left| {{z_0}} \right|\;\]là