IMG-LOGO

Câu hỏi:

22/07/2024 155

Cho lăng trụ đứng ABC.A'B'C' có chiều cao bằng 4, đáy ABC là tam giác cân tại A với AB = AC = 2; \[\angle BAC = {120^0}\]. Tính diện tích mặt cầu ngoại tiếp lăng trụ trên.

A.\[\frac{{64\sqrt 2 \pi }}{3}\]

B. \[16\pi \]

C. \[32\pi \]

Đáp án chính xác

D. \[\frac{{32\sqrt 2 \pi }}{3}\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho lăng trụ đứng ABC.A'B'C' có chiều cao bằng 4, đáy ABC là tam giác cân tại A với AB = AC = 2;  (ảnh 1)

Gọi M là trung điểm của BC, H là điểm đối xứng với A qua M.

Xét tứ giác ABHC có hai đường chéo cắt nhau tại trung điểm mỗi đường và

\[AM \bot BC \Rightarrow AH \bot BC\]  (do tam giác ABC cân tại A) nên ABHC là hình thoi \[ \Rightarrow HB = HC\]

Xét tam giác ABH có AB = BH, \[\angle BAH = \frac{1}{2}\angle BAC = {60^0}\] nên là tam giác đều, do đó HA = HB.

Suy ra HA = HB = HC hay H là tâm đường tròn ngoại tiếp tam giác ABC.

Gọi H’ là hình chiếu của A lên (A’B’C’) thì H’ chính là tâm đường tròn ngoại tiếp tam giác A’B’C’, khi đó HH’ là trục của khối lăng trụ đứng.

Gọi I là trung điểm của HH’, ta có IA = IB = IC, IA’ = IB’ = IC’.

Xét tam giác vuông AHI và tam giác vuông A’H’I có: HI = H’I (theo cách dựng), AH = A’H’.

\[ \Rightarrow {\rm{\Delta }}AHI = {\rm{\Delta }}A'H'I\] (2 cạnh góc vuông) =>IA = IA′. Do đó A = IB = IC = IA’ = IB’ = IC’ hay I chính là tâm mặt cầu ngoại tiếp khối lăng trụ đứng ABC.A’B’C’.

Ta có AH = AB = 2 (do ABHC là hình thoi) và HH’ = AA’ = 4 nên IH = 2.

Áp dụng định lí Pytago trong tam giác vuông AHI có:

\[AI = \sqrt {A{H^2} + H{I^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \]

Suy ra bán kính mặt cầu ngoại tiếp khối lăng trụ là \[R = 2\sqrt 2 \]

Vậy diện tích mặt cầu ngoại tiếp khối lăng trụ là: \[{S_{mc}} = 4\pi {R^2} = 4\pi .{\left( {2\sqrt 2 } \right)^2} = 32\pi \]

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên b. Công thức tính bán kính mặt cầu ngoại tiếp khối chóp là:

Xem đáp án » 07/09/2022 333

Câu 2:

Một hình hộp chữ nhật có độ dài ba cạnh lần lượt là 2;2;1. Tìm bán kính R của mặt cầu ngoại tiếp hình hộp chữ nhật trên.

Xem đáp án » 07/09/2022 230

Câu 3:

Ba đoạn thẳng SA, SB, SC đôi một vuông góc tạo với nhau thành một tứ diện SABC với SA = a, SB = 2a, SC = 3a . Tính bán kính mặt cầu ngoại tiếp hình tứ diện đó là

Xem đáp án » 07/09/2022 227

Câu 4:

Mặt cầu ngoại tiếp hình đa diện nếu nó:

Xem đáp án » 07/09/2022 215

Câu 5:

Cho mặt cầu (S1) có bán kính  R1 mặt cầu (S2) có bán kính  R2 = 2R1. Tính tỉ số diện tích của mặt cầu (S2) và (S1).

Xem đáp án » 07/09/2022 215

Câu 6:

Tập hợp các điểm cách đều hai đầu mút của đoạn thẳng là:

Xem đáp án » 07/09/2022 212

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, \[SA \bot (ABCD)\;\] và SA = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.

Xem đáp án » 07/09/2022 205

Câu 8:

Hình nào sau đây không có mặt cầu ngoại tiếp?

Xem đáp án » 07/09/2022 204

Câu 9:

Tâm mặt cầu ngoại tiếp hình chóp tam giác đều nằm ở đâu?

Xem đáp án » 07/09/2022 198

Câu 10:

Trục đa giác đáy là đường thẳng vuông góc với mặt phẳng đáy tại:

Xem đáp án » 07/09/2022 192

Câu 11:

Cho tứ diện ABCD có AB = a;AC = BC = AD = BD =\(\frac{{a\sqrt 3 }}{2}\). Gọi M,N là trung điểm của AB,CD. Góc giữa hai mặt phẳng (ABD);(ABC) là \[\alpha \] . Tính \[cos\alpha \] biết mặt cầu đường kính MN tiếp xúc với cạnh AD.

Xem đáp án » 07/09/2022 189

Câu 12:

Công thức tính bán kính mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy là:

Xem đáp án » 07/09/2022 188

Câu 13:

Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân đỉnh A, AB = AC = a, AA’ =\(a\sqrt 2 \). Diện tích mặt cầu ngoại tiếp tứ diện  CA′B′C′ là:

Xem đáp án » 07/09/2022 188

Câu 14:

Số mặt cầu ngoại tiếp tứ diện là:

Xem đáp án » 07/09/2022 183

Câu 15:

Khối cầu thể tích V thì bán kính là:

Xem đáp án » 07/09/2022 180

Câu hỏi mới nhất

Xem thêm »
Xem thêm »