Hai véc tơ \[\vec u = \left( {a;1;b} \right),\vec v = \left( { - 2;2;c} \right)\]cùng phương thì:
A.b=2c
B.c=2b
C.b=−2c
D.b=c
Ta có:\(\overrightarrow u = k\overrightarrow v \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 2k}\\{1 = 2k}\\{b = kc}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = \frac{1}{2}}\\{a = - 1}\\{b = \frac{1}{2}c}\end{array} \Rightarrow c = 2b} \right.\)
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian tọa độ Oxyz, tính thể tích khối tứ diện OBCD biết B(2;0;0),C(0;1;0),D(0;0;−3).
Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]khi đó:
Trong không gian với hệ trục tọa độ Oxyz, véctơ nào dưới đây vuông góc với cả hai véctơ \[\overrightarrow u = \left( { - 1;0;2} \right),\overrightarrow v = \left( {4;0; - 1} \right)\]?
Tính tích có hướng của hai véc tơ \[\vec u\left( {0;1; - 1} \right),\vec v\left( {1; - 1; - 1} \right)\]
Điều kiện để hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \] cùng phương là:
Cho hai véc tơ \[\overrightarrow {{u_1}} = \left( {{x_1};{y_1};{z_1}} \right)\]và \[\overrightarrow {{u_2}} = \left( {{x_2};{y_2};{z_2}} \right)\]. Kí hiệu \[\overrightarrow u = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right],\]khi đó:
Trong không gian Oxyz cho các điểm A(1;−1;0), B(−1;0;2), D(−2;1;1), A′(0;0;0). Thể tích khối hộp ABCD.A′B′C′D′ là:
Trong không gian Oxyz, cho hai điểm A(1;0;2), B(2;−1;3). Số điểm M thuộc trục Oy sao cho tam giác MAB có diện tích bằng \(\frac{{\sqrt 6 }}{4}\)là:
Diện tích hình bình hành ABCD có các điểm A(1;0;0),B(0;1;2),C(−1;0;0) là:
Cho hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]kí hiệu \(\left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\) là góc hợp bởi hai véc tơ. Chọn mệnh đề đúng:
Trong không gian Oxyz cho hai điểm A(0;−2;3),B(1;0;−1). Tính sin góc hợp bởi hai véc tơ \(\overrightarrow {OA} ,\overrightarrow {OB} \)
Sin của góc giữa hai véc tơ \[\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \]là: