Phương pháp:
Khoảng vân:
Giá trị trung bình:
Sai số tỉ đối: \(\frac{{\Delta \lambda }}{{\bar \lambda }} = \frac{{\Delta a}}{{\bar a}} + \frac{{\Delta i}}{{\bar i}} + \frac{{\Delta D}}{{\bar D}}\)
Sai số tuyệt đối trung bình:
Cách giải:
Khoảng cách giữa 11 vân sáng là 10 khoảng vân, ta có:
Sai số tuyệt đối của khoảng vân là:
\(10\Delta i = \frac{{\Delta {i_1} + \Delta {i_2} + \Delta {i_3} + \Delta {i_4} + \Delta {i_5}}}{5} \Rightarrow \Delta i = \frac{{1 + 0,5 + 1 + 0,5 + 0}}{{50}} = 0,06(\;{\rm{mm}})\)
Giá trị trung bình của bước sóng là:
Ta có sai số tỉ đối:
\(\frac{{\Delta \lambda }}{{\bar \lambda }} = \frac{{\Delta a}}{{\bar a}} + \frac{{\Delta i}}{{\bar i}} + \frac{{\Delta D}}{{\bar D}} \Rightarrow \frac{{\Delta \lambda }}{{0,65}} = \frac{0}{{{{0,5.10}^{ - 3}}}} + \frac{{0,06}}{{1,3}} + \frac{{0,1}}{{100}}\)
Chọn A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Dao động của một vật là tổng hợp của hai dao động điều hòa cùng phương, có phương trình li độ lần lượt là \({x_1} = {A_1}\cos \left( {10t + \frac{\pi }{6}} \right)(cm);{x_2} = 4\cos (10t + \varphi )(cm)\) (t tính bằng s), \({A_1}\) có giá trị thay đổi được. Phương trình dao động tổng hợp của vật có dạng \(x = A\cos \left( {\omega t + \frac{\pi }{3}} \right)(cm)\). Độ lớn gia tốc lớn nhất của vật có thể nhận giá trị là