Chứng minh rằng:
a) a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng: Tính a3 + b3, biết a.b = 6 và a + b = -5
a) Biến đổi vế phải ta được:
(a + b)3 – 3ab(a + b)
= a3 + 3a2b + 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3
Vậy a3 + b3 = (a + b)3 – 3ab(a + b)
b) Biến đổi vế phải ta được:
(a – b)3 + 3ab(a – b)
= a3 – 3a2b + 3ab2 – b3 + 3a2b – 3ab2
= a3 – b3
Vậy a3 – b3 = (a – b)3 + 3ab(a – b)
– Áp dụng: Với ab = 6, a + b = –5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (–5)3 – 3.6.(–5) = –53 + 3.6.5 = –125 + 90 = –35
Kiến thức áp dụng
Hằng đẳng thức cần nhớ:
(A + B)3 = A3 + 3A2B + 3AB2 + B3 (4)
(A – B)3 = A3 – 3A2B + 3AB2 + B3 (5)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Rút gọn các biểu thức sau:
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
Tìm x biết
a) ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.