Tìm số tự nhiên n sao cho:
a) 3n + 13 chia hết cho n + 1;
b) 5n + 19 chia hết cho 2n + 1.
a) Ta có: 3n + 13 = 3n + 3 + 10 = 3.(n + 1) + 10.
Vì 3.(n + 1) chia hết cho n + 1 nên để 3n + 13 chia hết cho n + 1 thì 10 phải chia hết cho n + 1 hay n + 1 là ước của 10.
Ta có: 10 = 2.5 nên các ước của 10 là: Ư(10) = {1; 2; 5; 10}.
Ta có bảng sau:
n + 1 |
1 |
2 |
5 |
10 |
n |
0 |
1 |
4 |
9 |
Vậy n ∈ {0; 1; 4; 9}.
b) 5n + 19 chia hết cho 2n + 1.
Vì 5n + 19 chia hết cho 2n + 1 nên 2(5n + 19) chia hết cho 2n + 1
Xét 2(5n + 19) = 10n + 38 = 10n + 5 + 33 = 5(2n + 1) + 33.
Vì 5.(2n + 1) chia hết cho 2n + 1 nên để 2(5n + 19) chia hết cho 2n + 1 thì 33 phải chia hết cho 2n + 1 hay 2n + 1 thuộc ước của 33.
Ta có bảng sau:
2n + 1 |
1 |
3 |
11 |
33 |
n |
0 |
1 |
5 |
16 |
Vậy n ∈ {0; 1; 5; 16}.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Bạn Khanh có 16 cái bút. Bạn Khanh muốn chia số bút đó vào các hộp sao cho số bút của các hộp bằng nhau và mỗi hộp ít nhất hai cái. Bạn Khanh có thể xếp 16 cái bút đó vào mấy hộp? (Kể cả trường hợp xếp vào một hộp).
Phân tích 225 và 1 200 ra thừa số nguyên tố rồi cho biết mỗi số đó chia hết cho những số nguyên tố nào.
Học sinh lớp 6A nhận được phần thưởng từ Liên đội nhà trường, mỗi học sinh đều được nhận số phần thưởng như nhau. Cô tổng phụ trách đã phát hết 215 quyển vở và 129 quyển truyện cho học sinh lớp 6A. Số học sinh của lớp 6A là bao nhiêu, biết rằng số học sinh của lớp nhiều hơn 10 học sinh?
Tìm số tự nhiên n, biết:
a) 2 + 4 + 6 + … + 2.(n – 1) + 2n = 210.
b) 1 + 3 + 5 + … + (2n – 3) + (2n – 1) = 225.
Cho a = 72.113. Trong các số 7a, 11a, 13a, số nào có nhiều ước nhất?
Một trường có 1 015 học sinh, cần phải xếp mỗi hàng bao nhiêu học sinh để số học sinh trong mỗi hàng là như nhau? Biết rằng số hàng không quá 40 hàng và không ít hơn 10 hàng.
Thực hiện mỗi phép tính sau, rồi phân tích kết quả ra thừa số nguyên tố:
a) 777:7 + 361:192;
b) 3.52 – 3.17 + 43.7.
Bạn Lan khẳng định: “ Khi phân tích số tự nhiên a ra thừa số nguyên tố, nếu a = p.q2 thì a có tất cả 6 ước”. Theo em, bạn Lan khẳng định đúng hay sai? Vì sao?
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1