Trong không gian Oxyz, cho mặt cầu \[(S):{(x + 2)^2} + {(y - 1)^2} + {(z + \sqrt 2 )^2} = 9\] và hai điểm \[A( - 2;0; - 2\sqrt 2 ),B( - 4; - 4;0)\]. Biết rằng tập hợp các điểm M thuộc \[(S)\] sao cho \[M{A^2} + \overrightarrow {MO} .\overrightarrow {MB} = 16\] là một đường tròn. Bán kính của đường tròn đó bằng
Đáp án C
Gọi .\[M\left( {x;y;z} \right)\] ta có \(\overrightarrow {AM} = \left( {x + 2;y;z + 2\sqrt 2 } \right),{\rm{ }}\overrightarrow {OM} = \left( {x;y;z} \right),{\rm{ }}\overrightarrow {BM} = \left( {x + 4;y + 4;z} \right)\).
Ta có: \(M{A^2} + \overrightarrow {MO} .\overrightarrow {MB} = 16 \Leftrightarrow M{A^2} + \overrightarrow {OM} .\overrightarrow {BM} = 16\)
\( \Leftrightarrow {\left( {x + 2} \right)^2} + {y^2} + {\left( {z + 2\sqrt 2 } \right)^2} + x\left( {x + 4} \right) + y\left( {y + 4} \right) + {z^2} = 16\)
\( \Leftrightarrow {x^2} + {y^2} + {z^2} + 4x + 4y + 2\sqrt 2 z - 2 = 0{\rm{ }}\left( 1 \right)\)
Ta lại có:
\(M \in \left( S \right) \Rightarrow {\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + \sqrt 2 } \right)^2} = 9 \Leftrightarrow {x^2} + {y^2} + {z^2} + 4x - 2y + 2\sqrt 2 z - 2 = 0{\rm{ }}\left( 2 \right)\)
Từ (1), (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} + 4x + 4y + 2\sqrt 2 z = 0\\{x^2} + {y^2} + {z^2} + 4x - 2y + 2\sqrt 2 z - 2 = 0\end{array} \right. \Rightarrow 6y = 0 \Leftrightarrow y = 0\).
Vậy tập hợp các điểm M là đường tròn giao tuyến \(\left( C \right)\) của \[\left( S \right)\] và mặt phẳng \[\left( P \right):y = 0\].
Đường tròn \(\left( C \right)\) có bán kính \[r = \sqrt {{R^2} - {{\left[ {d\left( {I;\left( P \right)} \right)} \right]}^2}} {\rm{ }}\left( * \right)\].
Mặt cầu \[\left( S \right)\] có tâm \[I\left( { - 2;1; - \sqrt 2 } \right)\], bán kính \[R = 3 \Rightarrow d\left( {I;\left( P \right)} \right) = 1\].
Do đó, \[\left( * \right) \Rightarrow r = \sqrt {{3^2} - {1^2}} = 2\sqrt 2 \].
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x + 2y - z + 9 = 0\] và điểm \[A\left( {1;2; - 3} \right).\] Đường thẳng d đi qua A và có vectơ chỉ phương \[\vec u = \left( {3;4; - 4} \right)\] cắt (P) tại B. Điểm M thay đổi trên (P) sao cho M luôn nhìn đoạn AB dưới một góc \[{90^0}\]. Độ dài đoạn MB lớn nhất bằng
Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ
Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\] là
Một chất điểm đang chuyển động với vận tốc \[{v_0} = 15{\mkern 1mu} m/s\] thì tăng tốc với gia tốc \[a\left( t \right) = {t^2} + 4t{\mkern 1mu} \left( {m/{s^2}} \right).\] Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng vận tốc.
Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu của đạo hàm như sau.
Hàm số \[y = f\left( {x - 1} \right) + {x^3} - 12x + 2019\] nghịch biến trên khoảng nào dưới đây?
Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC, với \[A\left( {1;2;1} \right),B\left( { - 3;0;3} \right),C\left( {2;4; - 1} \right).\] Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:
Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].
Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng
Trong không gian Oxyz, cho \[A\left( {1;3;5} \right)\], \[B\left( { - 5; - 3; - 1} \right)\]. Phương trình mặt cầu đường kính AB là:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật \[AB = a\], \[AD = 2a\], cạnh bên SA vuông góc với đáy và thể tích khối chóp S.ABCD bằng \[\frac{{2{a^3}}}{3}\] . Tính góc tạo bởi đường thẳng SB với mặt phẳng \[\left( {ABCD} \right)\].
Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]
Cho hình lập phương \[ABCD.A'B'C'D'\] cạnh a. Gọi M, N lần lượt là trung điểm của cạnh \[A'B'\] và BC. Mặt phẳng (DMN) chia khối lập phương thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnhA và \[(H')\] là khối đa diện còn lại. Tính tỉ số \[\frac{{{V_{(H)}}}}{{{V_{(H')}}}}.\]
Với các số thực \[a,b > 0,a \ne 1\] tùy ý, biểu thức \[{\log _{{a^2}}}\left( {a{b^2}} \right)\] bằng:
Số nghiệm của phương trình \[\ln \left( {{x^2} - 6x + 7} \right) = \ln \left( {x - 3} \right)\] là