Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

22/07/2024 166

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^2} - x + 5\) biết tiếp tuyến đó vuông góc với đường thẳng \(y = - \frac{1}{3}x + 1.\)

A.\(y = 3x - 13.\)

B.\(y = 3x + 13.\)

C.\(y = 3x + 1.\)

Đáp án chính xác

D. \(y = 3x - 1.\)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Gọi tiếp điểm \(M\left( {{x_0};{y_0}} \right).\) Ta có \(y'\left( {{x_0}} \right) = 2{x_0} - 1.\)

Vì tiếp tuyến của đồ thị hàm số \(y = {x^2} - x + 5\) vuông góc với đường thẳng \(y = - \frac{1}{3}x + 1\) nên \(y'\left( {{x_0}} \right).\left( { - \frac{1}{3}} \right) = - 1 \Leftrightarrow y'\left( {{x_0}} \right) = 3 \Leftrightarrow 2{x_0} - 1 = 3 \Leftrightarrow {x_0} = 2.\)

Khi đó \({y_0} = {2^2} - 2 + 5 = 7 \Rightarrow M\left( {2;7} \right).\)

Phương trình tiếp tuyến của đồ thị àm số \(y = {x^2} - x + 5\) dạng \(y = 3.\left( {x - 2} \right) + 7 \Leftrightarrow y = 3x + 1.\)

Đáp án C.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) (\(m\) là tham số thực) thỏa mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{16}}{3}.\) Mệnh đề nào dưới đây đúng?

Xem đáp án » 08/09/2022 340

Câu 2:

Cho khối tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = 3cm,OB = 4cm,OC = 10cm.\) Thể tích khối tứ diện \(OABC\) bằng

Xem đáp án » 08/09/2022 319

Câu 3:

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Cho hàm số bậc ba\(y = f\left( x \right)\) có đồ thị như hình vẽ.Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị? (ảnh 1)

Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị?

Xem đáp án » 08/09/2022 285

Câu 4:

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào? (ảnh 1)

Xem đáp án » 08/09/2022 261

Câu 5:

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(ABC,SA = 1\) và đáy \(ABC\) là tam giác đều với độ dài cạnh bằng 2. Tính góc giữa mặt phẳng \(SBC\) và mặt phẳng \(ABC.\)

Xem đáp án » 08/09/2022 242

Câu 6:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có điểm \(O\) và \(G\) lần lượt là tâm của mặt bên \(ABB'A'\) và trọng tâm của \(\Delta ABC.\) Biết \({V_{ABC.A'B'C'}} = 270c{m^3}.\) Thể tích của khối chóp \(AOGB\) bằng

Xem đáp án » 08/09/2022 208

Câu 7:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là (ảnh 1)

Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là

Xem đáp án » 08/09/2022 207

Câu 8:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm f'(x)=(3x)(103x)2(x2)2 với mọi \(x \in \mathbb{R}.\) Hàm số \(g\left( x \right) = f\left( {3 - x} \right) + \frac{1}{6}{\left( {{x^2} - 1} \right)^3}\) đồng biến trên khoảng nào trong các khoảng sau?

Xem đáp án » 08/09/2022 190

Câu 9:

Cho khối chóp tam giác đều có cạnh đáy bằng 2 và chiều cao \(h = 12.\) Thể tích của khối chóp đã cho bằng

Xem đáp án » 08/09/2022 183

Câu 10:

Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \frac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right].\) Tổng \(S = 3m + M\) bằng

Xem đáp án » 08/09/2022 182

Câu 11:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 08/09/2022 176

Câu 12:

Hàm số \(y = 2{x^4} + 4{x^2} - 8\) có bao nhiêu điểm cực trị?

Xem đáp án » 08/09/2022 175

Câu 13:

Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Xem đáp án » 08/09/2022 172

Câu 14:

Có tất cả bao nhiêu số nguyên dương \(m\) để hàm số \(y = \frac{{\cos x + 1}}{{10\cos x + m}}\) đồng biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\)?

Xem đáp án » 08/09/2022 167

Câu 15:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R},\) dấu của đạo hàm được cho bởi bảng

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R},\) dấu của đạo hàm được cho bởi bảng\(x\)\( - \infty \)                                0                             (ảnh 1)

Hàm số \(y = f\left( {2x - 2} \right)\) nghịch biến trong khoảng nào?

Xem đáp án » 08/09/2022 164

Câu hỏi mới nhất

Xem thêm »
Xem thêm »