Từ một hộp đựng 2019 thẻ đánh số thứ tự từ 1 đến 2019. Chọn ngẫu nhiên ra hai thẻ. Tính xác suất của biến cố A = “tổng số ghi trên hai thẻ nhỏ hơn 2002”.
A.\(\frac{{{{10}^6} - {{10}^3}}}{{C_{2019}^2}}.\)
B.\(\frac{{{{10}^6} - 1}}{{C_{2019}^2}}.\)
C.\(\frac{{{{10}^6}}}{{C_{2019}^2}}.\)
D. \(\frac{{{{10}^5}}}{{C_{2019}^2}}.\)
Số phần tử của không gian mẫu là:
Để chọn được hai thẻ có tổng số nhỏ hơn 2002 ta xét các trường hợp sau:
TH 1: chọn số 1, khi đó có 1999 cách chọn số còn lại thuộc tập \(\left\{ {2;3;...;2000} \right\}.\)
TH 2: chọn số 2, khi đó có 1997 cách chọn số còn lại thuộc tập \(\left\{ {3;...;1999} \right\}.\)
…..
TH 1000: chọn số 1000, khi đó có 1 cách chọn số còn lại thuộc tập
Nên \(n\left( A \right) = 1999 + 1997 + ... + 1 = \frac{{\left( {1999 + 1} \right)1000}}{2} = {10^6},P\left( A \right) = \frac{{{{10}^6}}}{{C_{2019}^2}}.\)
Đáp án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) (\(m\) là tham số thực) thỏa mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{16}}{3}.\) Mệnh đề nào dưới đây đúng?
Cho khối tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = 3cm,OB = 4cm,OC = 10cm.\) Thể tích khối tứ diện \(OABC\) bằng
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị?
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(ABC,SA = 1\) và đáy \(ABC\) là tam giác đều với độ dài cạnh bằng 2. Tính góc giữa mặt phẳng \(SBC\) và mặt phẳng \(ABC.\)
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có điểm \(O\) và \(G\) lần lượt là tâm của mặt bên \(ABB'A'\) và trọng tâm của \(\Delta ABC.\) Biết \({V_{ABC.A'B'C'}} = 270c{m^3}.\) Thể tích của khối chóp \(AOGB\) bằng
Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là
Cho hàm số \(y = f\left( x \right)\) có đạo hàm với mọi \(x \in \mathbb{R}.\) Hàm số \(g\left( x \right) = f\left( {3 - x} \right) + \frac{1}{6}{\left( {{x^2} - 1} \right)^3}\) đồng biến trên khoảng nào trong các khoảng sau?
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \frac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right].\) Tổng \(S = 3m + M\) bằng
Cho khối chóp tam giác đều có cạnh đáy bằng 2 và chiều cao \(h = 12.\) Thể tích của khối chóp đã cho bằng
Có tất cả bao nhiêu số nguyên dương \(m\) để hàm số \(y = \frac{{\cos x + 1}}{{10\cos x + m}}\) đồng biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\)?
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^2} - x + 5\) biết tiếp tuyến đó vuông góc với đường thẳng \(y = - \frac{1}{3}x + 1.\)