Cho tứ giác \(ABCD\) biết số đo của 4 góc của tứ giác lập thành cấp số cộng và có 1 góc có số đo bằng \({30^0},\) góc có số đo lớn nhất trong 4 góc của tứ giác này là:
A.\({150^0}\)
B.\({120^0}\)
C.\({135^0}\)
D. \({160^0}\)
Giả sử \({0^0} < A < B < C < D < {180^0}\) và \(A,B,C,D\) lập thành 1 cấp số cộng, giả sử công sai \(d >0\left( * \right)\)</>
Khi đó: \(B = A + d,c = A + 2d,D = A + 3d\)
Nên
\( \Rightarrow {S_4} = A + B + C + D = {30^0} + {30^0} + d + {30^0} + 2d + {30^0} + 3d = {120^0} + 6d = {360^0}\)
\( \Leftrightarrow f = {40^0} \Rightarrow D = {30^0} + {3.40^0} = {150^0} < {180^0}\) (thỏa mãn)
Nếu \(B = {30^0} \Rightarrow {S_4} = A + B + C + D = {30^0} - d + {30^0} + {30^0} + d + {30^0} + 2d = {360^0}\)
\( \Leftrightarrow {120^0} + 2d = {360^0} \Leftrightarrow d = {120^0}\)
\( \Rightarrow D = {30^0} + 2d = {30^0} + {2.120^0} = {270^0}\) (không thỏa mãn)
Nếu \(C = {30^0} \Rightarrow {S_4} = A + B + C + D = {30^0} - 2d + {30^0} - d + {30^0} + {30^0} + d = {360^0}\)
\( \Leftrightarrow {120^0} - 2d = {360^0} \Leftrightarrow d = - {120^0}\) (không thỏa mãn)
Nếu \(D = {30^0} \Rightarrow {S_4} = A + B + C + D = {30^0} - 3d + {30^0} - 2d + {30^0} - d + {30^0} = {360^0}\)
\( \Leftrightarrow {120^0} - 6d = {360^0} \Leftrightarrow d = - {40^0}\) (không thỏa mãn).
Vậy góc lớn nhất của tứ giác là \({150^0}.\)
Đáp án A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằng
Một vật có phương trình chuyển động \(S\left( t \right) = 4,9{t^2};\) trong đó t tính bằng (s), S(t) tính bắng mét (m). Vận tốc của vật tại thời điểm t=6s bằng
Trong các phương trình dưới đây, phương trình nào có tập nghiệm là: \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,AD = a\sqrt 2 ,\) đường thẳng \(SA\) vuông góc với \(mp\left( {ABCD} \right).\) Góc giữa \(SC\) và \(mp\left( {ABCD} \right)\) bằng \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\)
Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA = AB = a.\) Góc giữa \(SA\) và \(CD\) là
Cho tứ diện đều \(ABCD\) có cạnh bằng 1, gọi \(M\) là trung điểm \(AD\) và \(N\) trên cạnh \(BC\) sao cho \(BN = 2NC.\) Khoảng cách giữa hai đường thẳng \(MN\) và \(CD\) là
Cho hình chóp tứ giác có đáy là hình vuông cạnh \(a,\) khi cạnh đáy của hình chóp giảm đi 3 lần và vẫn giữ nguyên chiều cao thì thể tích của khối chóp giảm đi mấy lần:
Xét phép thử T: “Gieo một con súc sắc cân đối và đồng chất” và biến cố A liên quan đến phép thử: “Mặt lẻ chấm xuất hiện”. Chọn khẳng định sai trong những khẳng định dưới đây:
Đồ thị hàm số \(y = \frac{{x - 2}}{{x + 4}}\) cắt trục tung tại điểm có tung độ bằng
Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên dưới.
Hàm số \(g\left( x \right) = f\left( {3 - 4x} \right) - 8{x^2} + 12x + 2020\) nghịch biến trên khoảng nào dưới đây?
Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng \(a.\) Gọi \(M;N\) lần lượt là trung điểm của \(SA\) và \(BC.\) Biết góc giữa \(MN\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({60^0}.\) Khoảng cách giữa hai đường thẳng \(BC\) và \(DM\) là: