Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

06/07/2024 127

Cho hình chóp tứ giác \(S.ABCD\) có \(SA = x\) và tất cả các cạnh còn lại đều bằng 1. Khi thể tích khối chóp \(S.ABCD\) đạt giá trị lớn nhất thì \(x\) nhận giá trị nào sau đây?

A.\(x = \frac{{\sqrt {35} }}{7}\)

B.\(x = 1.\)

C.\(x = \frac{9}{4}\)

D. \(x = \frac{{\sqrt {34} }}{7}\)

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp tứ giác \(S.ABCD\) có \(SA = x\) và tất cả các cạnh còn lại đều bằng 1. Khi thể tích khối chóp \(S.ABCD\) đạt giá trị lớn nhất thì \(x\) nhận giá trị nào sau đây? (ảnh 1)

Gọi

\(H\)là tâm đường tròn ngoại tiếp tam giác \(BCD,\) do \(SB = SC = SD\) nên \(SH\) là trục của đường tròn ngoại tiếp tam giác \(BCD,\) suy ra \(SH \bot \left( {ABCD} \right).\)

Do tứ giác \(ABCD\) là hình thoi nên \(AC\) là đường trung trực của đường thẳng \(BD\) do đó \(H \in AC.\)

Đặt \(\alpha = \widehat {ACD},0 < \alpha < \frac{\pi }{2} \Rightarrow \widehat {BCD} = 2\alpha ,\) suy ra \({S_{ABCD}} = 2{S_{BCD}} = BC.CD.\sin \widehat {BCD} = \sin 2\alpha .\)

Gọi \(K\) là trung điểm của \(CD \Rightarrow CD \bot SK,\) mà \(CD \bot SH\) suy ra \(CD \bot HK.\)

\(HC = \frac{{CK}}{{\cos \alpha }} = \frac{1}{{2\cos \alpha }},SH = \sqrt {S{C^2} - H{C^2}} = \sqrt {1 - \frac{1}{{4{{\cos }^2}\alpha }}} = \frac{{\sqrt {4{{\cos }^2}\alpha - 1} }}{{2\cos \alpha }}\).

Thể tích khối chóp \(S.ABCD\) là \(V = \frac{1}{3}SH.{S_{ABCD}} = \frac{1}{3}\frac{{\sqrt {4\cos \alpha - 1} }}{{2\cos \alpha }}.\sin 2\alpha = \frac{1}{3}\sin \alpha \sqrt {4{{\cos }^2}\alpha - 1} \)

Do đó \(V = \frac{1}{6}\left( {2\sin \alpha } \right)\sqrt {4{{\cos }^2}\alpha - 1} \le \frac{1}{6}\frac{{4{{\sin }^2}\alpha + 4{{\cos }^2}\alpha - 1}}{2} = \frac{1}{4}.\)

Dấu “=” xảy ra khi \(2\sin \alpha = \sqrt {4{{\cos }^2}\alpha - 1} \Leftrightarrow 4{\sin ^2}\alpha = 4{\cos ^2}\alpha - 1 \Leftrightarrow {\cos ^2}\alpha = \frac{5}{8}\)

\( \Leftrightarrow \cos \alpha = \frac{{\sqrt {10} }}{4}.\) Khi đó \(HC = \frac{2}{{\sqrt {10} }},SH = \frac{{\sqrt {15} }}{5}.\)

Gọi \(O = AC \cap BD,\) suy ra \(AC = 2OC = 2CD.\cos \alpha = \frac{{\sqrt {10} }}{2}.\)

\(AH = AC - HC = \frac{{\sqrt {10} }}{2} - \frac{2}{{\sqrt {10} }} = \frac{3}{{\sqrt {10} }}.\)

Vậy \(x = SA = \sqrt {S{H^2} + A{H^2}} = \sqrt {\frac{3}{5} + \frac{9}{{10}}} = \frac{{\sqrt 6 }}{2}.\)

Đáp án D.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằng

Xem đáp án » 08/09/2022 307

Câu 2:

Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên khoảng:

Xem đáp án » 08/09/2022 249

Câu 3:

Một vật có phương trình chuyển động \(S\left( t \right) = 4,9{t^2};\) trong đó t tính bằng (s), S(t) tính bắng mét (m). Vận tốc của vật tại thời điểm t=6s bằng

Xem đáp án » 08/09/2022 204

Câu 4:

Trong các phương trình dưới đây, phương trình nào có tập nghiệm là: \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\)

Xem đáp án » 08/09/2022 197

Câu 5:

Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA = AB = a.\) Góc giữa \(SA\) và \(CD\) là

Xem đáp án » 08/09/2022 186

Câu 6:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,AD = a\sqrt 2 ,\) đường thẳng \(SA\) vuông góc với \(mp\left( {ABCD} \right).\) Góc giữa \(SC\) và \(mp\left( {ABCD} \right)\) bằng \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\)

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,AD = a\sqrt 2 ,\) đường thẳng \(SA\) vuông góc với \(mp\left( {ABCD} \right).\) Góc giữa \(SC\) và \(mp\left( {ABCD} \right (ảnh 1)

Xem đáp án » 08/09/2022 185

Câu 7:

Cho tứ diện đều \(ABCD\) có cạnh bằng 1, gọi \(M\) là trung điểm \(AD\) và \(N\) trên cạnh \(BC\) sao cho \(BN = 2NC.\) Khoảng cách giữa hai đường thẳng \(MN\) và \(CD\) là

Xem đáp án » 08/09/2022 177

Câu 8:

Mệnh đề nào sau đây sai:

Xem đáp án » 08/09/2022 166

Câu 9:

Xét phép thử T: “Gieo một con súc sắc cân đối và đồng chất” và biến cố A liên quan đến phép thử: “Mặt lẻ chấm xuất hiện”. Chọn khẳng định sai trong những khẳng định dưới đây:

Xem đáp án » 08/09/2022 165

Câu 10:

Cho hình chóp tứ giác có đáy là hình vuông cạnh \(a,\) khi cạnh đáy của hình chóp giảm đi 3 lần và vẫn giữ nguyên chiều cao thì thể tích của khối chóp giảm đi mấy lần:

Xem đáp án » 08/09/2022 164

Câu 11:

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên dưới.

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên dưới.Hàm số \(g\left( x \right) = f\left( {3 - 4x} \right) - 8{x^2} + 12x + 2020\) nghịch biến trên  (ảnh 1)

Hàm số \(g\left( x \right) = f\left( {3 - 4x} \right) - 8{x^2} + 12x + 2020\) nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 08/09/2022 157

Câu 12:

Đồ thị hàm số \(y = \frac{{x - 2}}{{x + 4}}\) cắt trục tung tại điểm có tung độ bằng

Xem đáp án » 08/09/2022 156

Câu 13:

Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng \(a.\) Gọi \(M;N\) lần lượt là trung điểm của \(SA\) và \(BC.\) Biết góc giữa \(MN\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({60^0}.\) Khoảng cách giữa hai đường thẳng \(BC\) và \(DM\) là:

Xem đáp án » 08/09/2022 152

Câu 14:

Tính đạo hàm của hàm số \(y = {x^2} + 1\)

Xem đáp án » 08/09/2022 150

Câu 15:

Chọn kết quả sai trong các kết quả dưới đây:

Xem đáp án » 08/09/2022 147

Câu hỏi mới nhất

Xem thêm »
Xem thêm »