IMG-LOGO

Câu hỏi:

23/07/2024 237

Cho hai hàm số \(y = x(x - 2)(x - 3)(m - |x|);y = {x^4} - 6{x^3} + 5{x^2} + 11x - 6\) có đồ thị lần lượt là \(\left( {{C_1}} \right),\left( {{C_2}} \right)\). Có bao nhiêu giá trị nguyên \(m\) thuộc đoạn \([ - 2020;2020]\) để \(\left( {{C_1}} \right)\) cắt \(\left( {{C_2}} \right)\) tại 4 điểm phân biệt?

A. \(2021\)

Đáp án chính xác

B. \(2019\)

C. \(4041\)

D. \(2020\)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Xét phương trình hoành độ giao điểm:

\(x\left( {x - 2} \right)\left( {x - 3} \right)\left( {m - \left| x \right|} \right) = {x^4} - 6{x^3} + 5{x^2} + 11x - 6{\rm{ }}\left( 1 \right)\)

Số giao điểm của \(\left( {{C_1}} \right);\left( {{C_2}} \right)\) là số nghiệm của phương trình \(\left( 1 \right).\)

Do \(x = 0;x = 2;x = 3\) không là nghiệm của phương trình (1) nên:

\(\left( 1 \right) \Leftrightarrow \frac{{{x^4} - 6{x^3} + 5{x^2} + 11x - 6}}{{x\left( {x - 2} \right)\left( {x - 3} \right)}} = m - \left| x \right|\)

\( \Leftrightarrow x - 1 - \frac{2}{{x - 2}} - \frac{3}{{x - 3}} - \frac{1}{x} + \left| x \right| = m\)

Đặt \(f\left( x \right) = x - 1 - \frac{2}{{x - 2}} - \frac{3}{{x - 3}} - \frac{1}{x} + \left| x \right| = \left\{ \begin{array}{l}2x - 1 - \frac{2}{{x - 2}} - \frac{3}{{x - 3}} - \frac{1}{x},x >0\\ - 1 - \frac{2}{{x - 2}} - \frac{3}{{x - 3}} - \frac{1}{x},x < 0\end{array} \right.\)

Ta có \(f'\left( x \right) = \left\{ \begin{array}{l}2 + \frac{2}{{{{\left( {x - 2} \right)}^2}}} + \frac{3}{{{{\left( {x - 3} \right)}^2}}} + \frac{1}{{{x^2}}},x \ge 0\\\frac{2}{{{{\left( {x - 2} \right)}^2}}} + \frac{3}{{{{\left( {x - 3} \right)}^2}}} + \frac{1}{{{x^2}}},x < 0\end{array} \right. \Rightarrow f'\left( x \right) >0,\forall x \in \mathbb{R}.\)</>

Suy ra \(f\left( x \right)\) đồng biến trên từng khoảng xác định của nó: \(\left( { - \infty ;0} \right);\left( {0;2} \right);\left( {2;3} \right);\left( {3; + \infty } \right).\)

Mặt khác \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = - \infty \)

Bảng biến thiên

Cho hai hàm số \(y = x(x - 2)(x - 3)(m - |x|);y = {x^4} - 6{x^3} + 5{x^2} + 11x - 6\) có đồ thị lần lượt là \(\left( {{C_1}} \right),\left( {{C_2}} \right)\). Có bao nhiêu giá trị nguyên \(m\ (ảnh 1)
Từ bảng biến thiên suy ra phương trình (1) có 4 nghiệm phân biệt khi \(m >- 1.\)
Vậy số giá trị nguyên của \(m \in \left[ { - 2020;2020} \right]\) thỏa mãn là 2021.
Đáp án A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].

Xem đáp án » 08/09/2022 428

Câu 2:

Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là

Xem đáp án » 08/09/2022 265

Câu 3:

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình chữ nhật \(AB = a;AD = 4a;SA = a\sqrt {15} \),\(SA \bot \left( {ABCD} \right)\) , \(M\) là trung điểm của \(AD\) , \(N\) thuộc cạnh \(BC\) sao cho \(BC = 4BN\) . Khoảng cách gữa \(MN\) và \(SD\) là

Xem đáp án » 08/09/2022 243

Câu 4:

Gọi \(l,h,R\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ (T). Diện tích toàn phần Stp của hình trụ (T) là:

Xem đáp án » 08/09/2022 202

Câu 5:

Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng

Xem đáp án » 08/09/2022 202

Câu 6:

Gọi S là tập các giá trị m nguyên\(m\) để phương trình \(9.{\left( {\sqrt {10} + 3} \right)^x} + {\left( {\sqrt {10} - 3} \right)^x} - m + 2020 = 0\) có đúng hai nghiệm âm phân biệt. Số tập con của S là

Xem đáp án » 08/09/2022 202

Câu 7:

Một khối nón có đường sinh bằng 2a và diện tích xung quanh của mặt nón bằng πa2. Tính thể tích của khối nón đã cho?

Xem đáp án » 08/09/2022 202

Câu 8:

Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?

Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau? (ảnh 1)

Xem đáp án » 08/09/2022 191

Câu 9:

Gọi S là tập giá trị nguyên \(m \in \left[ { - 2020;2020} \right]\) để phương trình \(2{\sin ^2}x + m\sin 2x = 2m\) vô nghiệm.Tính tổng các phần tử của S

Xem đáp án » 08/09/2022 186

Câu 10:

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 11 = 0\). Tìm bán kính của đường tròn \((C')\) là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm Otỉ số \(k = - 2020\) và phép tịnh tiến theo véctơ \(\overrightarrow v = (2019;2020)\)là:

Xem đáp án » 08/09/2022 183

Câu 11:

Cho tập hợp A gồm có 2021 phần tử. Số tập con của A có số phần tử \( \ge 1011\) bằng

Xem đáp án » 08/09/2022 183

Câu 12:

Số nghiệm của phương trình \[{\log _4}\left( {3{x^2} + x} \right) = \frac{1}{2}\] là

Xem đáp án » 08/09/2022 178

Câu 13:

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \(\left| {f\left( {\cos x} \right)} \right| = - 2m + 3\) có 4 nghiệm thuộc khoảng [0;2π]

Cho hàm số liên tục trên và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số để phương trình \(\left| {f\left( {\cos x} \right)} \right| =  - 2m + 3\) có  nghiệm thuộc khoảng là# (ảnh 1)

Xem đáp án » 08/09/2022 176

Câu 14:

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(3a\). Gọi \(M\)thuộc cạnh \(B'C'\) sao cho \(MC' = 2MB'\) , \(N\) thuộc cạnh \(AC\) sao cho \(AC = 4NC\) Mặt phẳng \(\left( {A'MN} \right)\) cắt cạnh \(BC\) tại \(Q\). Tính thể tích \(V\) khối đa diện \(CNQ.C'A'M\).

Xem đáp án » 08/09/2022 175

Câu 15:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là

Xem đáp án » 08/09/2022 172

Câu hỏi mới nhất

Xem thêm »
Xem thêm »