IMG-LOGO

Câu hỏi:

21/07/2024 3,777

Một dãy ghế dài có 10  ghế. Xếp một cặp vợ chồng ngồi vào 2  trong 10  ghế sao cho người vợ ngồi bên phải người chồng (không bắt buộc ngồi gần nhau). Số cách xếp là:

A. 45

Đáp án chính xác

B. 50

C. 55

D. 362880

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án:

Ta lần lượt đánh số các ghế từ 1 đến 10.

Nếu người chồng ngồi ở vị trí 1 thì có 9 cách xếp người vợ.

Nếu người chồng ngồi ở vị trí 2 thì có 8 cách xếp người vợ.

….

Nếu người chồng ngồi ở vị trí 9 thì có 1 cách xếp người vợ.

Nếu người chồng ngồi ở vị trí 10 thì có 0 cách xếp người vợ.

Vậy có tất cả 9+8+7+6+5+4+3+2+1=45 cách.

Đáp án cần chọn là: A

Chú ý

Một số em có thể sẽ áp dụng nhầm công thức nhân dẫn đến chọn nhầm đáp án D là sai.

Câu trả lời này có hữu ích không?

1

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ

Xem đáp án » 30/07/2021 59,192

Câu 2:

Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường, không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D.

Xem đáp án » 30/07/2021 19,651

Câu 3:

Cho tập hợp A={0,1,2,3,4,5}. Có thể lập bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 5?

Xem đáp án » 30/07/2021 14,961

Câu 4:

Cho hai đường thẳng a và b song song với nhau. Trên đường thẳng a có 10 điểm phân biệt, trên đường thẳng b có 8 điểm phân biệt.Hỏi từ các điểm đã cho lập được bao nhiêu tam giác?

Xem đáp án » 30/07/2021 13,314

Câu 5:

Số điện thoại ở Huyện Củ Chi có 7 chữ số và bắt đầu bởi 3 chữ số đầu tiên là 790. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:

Xem đáp án » 30/07/2021 10,152

Câu 6:

Có bao nhiêu số tự nhiên chẵn gồm hai chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5?

Xem đáp án » 30/07/2021 9,677

Câu 7:

Trên giá sách có 6 quyển Văn khác nhau, 5 quyển sách Toán khác nhau và 9 quyển sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai quyển sách khác môn?

Xem đáp án » 30/07/2021 9,467

Câu 8:

Trên giá sách có 10 quyển Văn khác nhau, 8 quyển sách Toán khác nhau và 6 quyển sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai quyển sách khác môn?

Xem đáp án » 30/07/2021 5,022

Câu 9:

Biển đăng kí xe ô tô có 6  chữ số và hai chữ cái trong 26  chữ cái (không dùng các chữ I và O ). Chữ số đầu tiên khác 0. Hỏi số ô tô được đăng kí nhiều nhất có thể là bao nhiêu?

Xem đáp án » 30/07/2021 2,485

Câu 10:

Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

Xem đáp án » 30/07/2021 942

Câu 11:

Từ các chữ số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn?

Xem đáp án » 30/07/2021 842

Câu 12:

Có bao nhiêu cách sắp xếp 8 viên bi đỏ khác nhau và 8 viên bi đen khác nhau thành một dãy sao cho hai viên bi cùng màu không được ở cạnh nhau?

Xem đáp án » 30/07/2021 800

Câu 13:

Có bao nhiêu số tự nhiên có 5 chữ số trong đó các chữ số cách đều chữ số đứng giữa thì giống nhau?

Xem đáp án » 30/07/2021 603

Câu 14:

Cho tập hợp A={2,3,5,8}. Từ tập A có thể lập bao nhiêu số tự nhiên x sao cho 400<x<600?

Xem đáp án » 30/07/2021 529

LÝ THUYẾT

I. Quy tắc cộng

- Quy tắc cộng: Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.

- Quy tắc cộng được phát biểu ở trên thực chất là quy tắc đếm số phần tử của hợp hai tập hợp hữu hạn không giao nhau, được phát biểu như sau:

Nếu A và B là các tập hợp hữu hạn và không giao nhau thì:

n  (AB)  =n(A)  +n(B)

- Chú ý: Quy tắc cộng có thể mở rộng cho nhiều hành động.

- Ví dụ 1. Một lớp học có 21 bạn nữ và 19 bạn nam. Giáo viên chủ nhiệm cần chọn một bạn để làm lớp trưởng. Hỏi giáo viên có bao nhiêu cách chọn?

Lời giải:

+ Trường hợp 1. Giáo viên chọn 1 bạn nam: có 19 cách.

+ Trường hợp 2. Giáo viên chọn 1 bạn  nữ: có 21 cách

Theo quy tắc cộng, giáo viên sẽ có: 19 + 21 = 40 cách chọn 1 bạn làm lớp trưởng.

- Ví dụ 2. Bạn Lan có 10 quyển sách khác nhau; 12 chiếc bút khác nhau và 5 cục tẩy khác nhau. Bạn Lan cần chọn một món đồ để đem tặng Hoa. Hỏi bạn Lan có bao nhiêu cách chọn?

Lời giải:

Bạn Lan có thể chọn:

+ Một quyển sách: có 10 cách chọn

+ Một chiếc bút: có 12 cách chọn.

+ Một cục tẩy: có 5 cách chọn.

Theo quy tắc cộng, bạn Lan có: 10 + 12 + 5 =  27 cách chọn.

II. Quy tắc nhân

- Quy tắc nhân: Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.

- Chú ý: Quy tắc nhân có thể mở rộng cho nhiều hành động liên liếp.

- Ví dụ 3. Cho tập A = {1; 3; 4; 5; 6}. Hỏi lập được bao nhiêu số tự nhiên có 2 chữ số đôi một khác nhau từ tập A?

Lời giải:

Để tạo ra một số tự nhiên có 2 chữ số đôi một khác nhau từ tập A, ta phải thực hiện liên tiếp hai hành động:

- Hành động 1: Chọn chữ số hàng chục có 5 cách.

- Hành động 2. Chọn chữ số hàng đơn vị. Ứng với mỗi cách chọn chữ số hàng chục, ta có 4 cách chọn chữ số hàng đơn vị (vì chữ số hàng chục khác chữ số hàng đơn vị).

Theo quy tắc nhân, số các số tự nhiên thỏa mãn đầu bài là: 5.4 = 20 số.

- Ví dụ 4. Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 10 món, 1 loại quả tráng miệng trong 6 loại quả tráng miệng và 1 nước uống giải khát trong 4 loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?

Lời giải:

Để chọn một thực đơn, ta cần thực hiện liên tiếp ba hành động:

- Chọn 1 món ăn trong 10 món có 10 cách.

- Chọn 1 loại quả tráng miệng trong 6 loại quả tráng miệng có 6 cách.

- Chọn 1 nước uống trong 4 loại nước uống có 4 cách.

Theo quy tắc nhân, số cách cách chọn thực đơn là 10.6.4 = 240 cách.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »