Hàm số f(x) có đạo hàm f’(x) trên khoảng K. Cho đồ thị của hàm số f’(x) trên khoảng K như sau:
Số điểm cực trị của hàm số f(x) trên K là:
A. 1
B. 2
C. 3
D. 4
Đáp án A
Dựa vào đồ thị ta thấy phương trình f'(x) = 0 chỉ có một nghiệm đơn và hai nghiệm kép nên f'(x) chỉ đổi dấu khi qua nghiệm đơn này.
Do đó suy ra hàm số f(x) có đúng một cực trị.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Hàm số f(x) có đạo hàm f'(x) trên R. Cho đồ thị của hàm số f'(x) như sau:
Số điểm cực trị của hàm số là:
Hàm số f(x) có đạo hàm f’(x) trên khoảng K. Cho đồ thị của hàm số f’(x) trên khoảng K như sau:
Số điểm cực trị của hàm số y = f(x) + 2018 trên K là:
Cho hàm số . Đường thẳng đi qua điểm A(-1;1) và vuông góc với đường thẳng đi qua hai điểm cực trị của (C) có phương trình là
Hàm số y = f(x) có đồ thị như hình bên dưới. Hỏi đồ thị hàm số có mấy điểm cực trị:
Cho hàm số . Tích các giá trị cực đại và cực tiểu của hàm số bằng:
Cho hàm số y= f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định đúng ?
Cho hàm số với m là tham số thực. Hàm số có đồ thị (C) và bảng biến thiên sau:
Tìm m sao cho hàm số f(x) đạt cực trị ít nhất tại một điểm mà điểm đó lớn hơn -1
Cho hàm số y = f(x) có đạo hàm và liên tục trên R, hàm số y = f(x) đồ thị như hình vẽ:
Số điểm cực trị của hàm số là:
Cho hàm số y = f(x) có đạo hàm và liên tục trên R, hàm số y = f(x) đồ thị như hình vẽ
Số điểm cực trị của hàm số là:
Cho hàm số y = f(x) có đạo hàm và liên tục trên R, hàm số y = f(x) đồ thị như hình vẽ
Số điểm cực trị của hàm số là:
Cho hàm số y = f(x) có đạo hàm và liên tục trên R, hàm số y = f(x) đồ thị như hình vẽ
Số điểm cực trị của hàm số y = |f(x)| là:
Hàm số f(x) có đạo hàm f'(x) trên R. Cho đồ thị của hàm số f'(x) như sau:
Số điểm cực trị của hàm số là: