Cho hình vẽ, biết rằng OB là tia phân giác của \(\widehat {{\rm{AOC}}}\).
Số đo của \(\widehat {{\rm{BOC}}}\)là
Hướng dẫn giải
Đáp án đúng là: B
Ta có \(\widehat {{\rm{EOA}}}\) và \(\widehat {{\rm{AOC}}}\) là hai góc kề bù nên \(\widehat {{\rm{EOA}}} + \widehat {{\rm{AOC}}} = 180^\circ \)
Hay \(118^\circ + \widehat {{\rm{AOC}}} = 180^\circ \)
Suy ra \(\widehat {{\rm{AOC}}} = 180^\circ - 118^\circ = 62^\circ \)
Theo bài ta có OB là tia phân giác của \(\widehat {{\rm{AOC}}}\)
Do đó \(\widehat {{\rm{AOB}}} = \widehat {{\rm{BOC}}}\) (tính chất tia phân giác của một góc) (1)
Mà \(\widehat {{\rm{AOB}}} + \widehat {{\rm{BOC}}} = \widehat {{\rm{AOC}}}\) (hai góc kề nhau) (2)
Từ (1) và (2) suy ra \(\widehat {{\rm{AOB}}} = \widehat {{\rm{BOC}}} = \frac{1}{2}\widehat {{\rm{AOC}}}\)
Hay \(\widehat {{\rm{BOC}}} = \frac{1}{2}.62^\circ = 31^\circ \)
Vậy ta chọn phương án B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vẽ:
Biết rằng EF // BC. Số đo của \(\widehat {BEF}\) là:
Cho hình vẽ
Giá trị của m để tia Oz là tia phân giác của \(\widehat {{\rm{yOt}}}\) là:
Cho hình vẽ. Biết rằng x // y; đường thẳng z cắt hai đường thẳng x, y lần lượt tại A, B sao cho \({\widehat {\rm{A}}_1} = 60^\circ \).
Số đó của \({\widehat {\rm{B}}_2}\) là:
Một định lí được minh họa bởi hình vẽ:
Định lí có giả thiết và kết luận như sau:
Định lí được phát biểu thành lời là:
Cho hình vẽ, biết rằng \(\widehat {{\rm{xOy}}} = 110^\circ \) và Oz là phân giác của \(\widehat {{\rm{yOt}}}\).
Số đo của \(\widehat {{\rm{xOz}}}\)là