Cho hình vẽ. Biết rằng x // y; đường thẳng z cắt hai đường thẳng x, y lần lượt tại A, B sao cho \({\widehat {\rm{A}}_1} = 60^\circ \).
Số đó của \({\widehat {\rm{B}}_2}\) là:
Hướng dẫn giải
Đáp án đúng là: A
Vì x // y nên \({\widehat {\rm{A}}_1}{\rm{ = }}{\widehat {\rm{B}}_1}{\rm{ = 60}}^\circ \) (hai góc đồng vị)
Ta có \({\widehat {\rm{B}}_1} = {\widehat {\rm{B}}_2}\) (hai góc đối đỉnh)
Suy ra \({\widehat {\rm{B}}_2} = 60^\circ \)
Vậy ta chọn phương án A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vẽ:
Biết rằng EF // BC. Số đo của \(\widehat {BEF}\) là:
Cho hình vẽ
Giá trị của m để tia Oz là tia phân giác của \(\widehat {{\rm{yOt}}}\) là:
Cho hình vẽ, biết rằng OB là tia phân giác của \(\widehat {{\rm{AOC}}}\).
Số đo của \(\widehat {{\rm{BOC}}}\)là
Một định lí được minh họa bởi hình vẽ:
Định lí có giả thiết và kết luận như sau:
Định lí được phát biểu thành lời là:
Cho hình vẽ, biết rằng \(\widehat {{\rm{xOy}}} = 110^\circ \) và Oz là phân giác của \(\widehat {{\rm{yOt}}}\).
Số đo của \(\widehat {{\rm{xOz}}}\)là