c) Tính khoảng cách từ điểm O (gốc tọa độ) tới đường thẳng (d).
c) (d) cắt Oy tại điểm C(0;1) và cắt trục Ox tại điểm D(-2;0).
Ta có: OC = 1 và OD = 2. Gọi h là khoảng cách từ O tới d.
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông OCD
Ta có:
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
b) Gọi A, B là hai giao điểm của (d) và (P). Tính diện tích tam giác OAB.
b) Gọi và lần lượt là các giao điểm của (d) và (P). Tính giá trị biểu thức .
Trong mặt phẳng tọa độ Oxy, cho các đường thẳng có phương trình:
.
Tìm k để các đường thẳng trên đồng quy.
Tìm tất cả các giá trị của tham số k để đường thẳng cắt đường thẳng tại một điểm nằm trên trục hoành.
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình và hai điểm A, B thuộc (P) có hoành độ lần lượt là .
a) Tìm tọa độ của hai điểm A, B.
Trong mặt phẳng tọa độ Oxy, cho parabol và đường thẳng .
a) Với m = 3, tìm tọa độ giao điểm của (d) và (P).
Cho đường thẳng d: y = (m - 1)x + n . Tìm các giá trị của m và n để đường thẳng d đi qua điểm A(1;-1) và có hệ số góc bằng -3.
b) Gọi A, B là giao điểm của đồ thị hàm số trên với trục tung và trục hoành. Tính diện tích tam giác OAB.
b) Tìm tất cả các giá trị của m để (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ là các số nguyên.
Tìm giá trị của m để hai đường thẳng và cắt nhau tại một điểm M thuộc đường thẳng .
b) Tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) bằng phép tính.