Thứ năm, 23/01/2025
IMG-LOGO

Câu hỏi:

23/07/2024 253

Giả sử A là tập con của tập hợp các số nguyên dương sao cho:

 I    kA;IInAn+1A,nk

Lúc đó ta có


A. Mọi số nguyên bé hơn k đều thuộc A.



B. Mọi số nguyên dương đều thuộc A.


C. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.

Đáp án chính xác

D. Mọi số nguyên đều thuộc A.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Chọn C

(I)kA: số nguyên dương k thuộc tập A.

(II)nAn+1A,nk: nếu số nguyên dương n   nk thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên np với p là số nguyên dương ta sẽ tiến hành 2 bước

Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n=1

Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n=k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n=k+1

Hãy chọn câu trả lời đúng tương ứng với lí luận trên.

Xem đáp án » 30/09/2022 270

Câu 2:

Cho Sn=11.2+12.3+13.4+...+1nn+1 với n*. Mệnh đề nào sau đây đúng?

Xem đáp án » 30/09/2022 266

Câu 3:

Cho dãy xác định bởi công thức u1=3un+1=12un,n*.  Số hạng tổng quát của dãy un  

Xem đáp án » 30/09/2022 252

Câu 4:

Chứng minh rằng với mọi số nguyên dương n2 , ta có 1.22+2.33+3.44+...+n1n2=nn213n+212      (1)

Xem đáp án » 30/09/2022 239

Câu 5:

Chứng minh rằng mọi n – giác lồi (n5) đều được chia thành hữu hạn ngũ giác lồi.

Xem đáp án » 30/09/2022 204

Câu 6:

Với mọi n*, khẳng định nào sau đây sai?

Xem đáp án » 30/09/2022 196

Câu 7:

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh n4 là nn32.

Xem đáp án » 30/09/2022 187

Câu 8:

Chứng minh rằng với mọi số tự nhiên n2, ta luôn có 2n+1>2n+3        (*)

Xem đáp án » 30/09/2022 186

Câu 9:

Chứng minh rằng với mọi n*,nn+1n+2n+3n+4  chia hết cho 120.

Xem đáp án » 30/09/2022 182

Câu 10:

Chứng minh rằng với mọi số nguyên dương n2  ta có 1n+1+1n+2+...+1n+n>1324     (1)

Xem đáp án » 30/09/2022 181

Câu 11:

Với mỗi số nguyên dương, kí hiệu un=5.23n2+33n1

Một học sinh chứng minh un luôn chia hết cho 19 như sau:

Bước 1: Khi n=1 ta có u1=5.21+32=19u119

Bước 2: Giả sử uk=5.23k2+33k+1  chia hết cho 19 với k1

Khi đó ta có uk+1=5.23k+1+33k+2=85.23k2+33k1+19.33k1

Bước 3: 5.23k2+33k1  19.33k1 chia hết cho 19 nên uk+1  chia hết cho 19,

Vậy un chia hết cho 19, n*

Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?

Xem đáp án » 30/09/2022 179

Câu 12:

Với mỗi số nguyên dương, kí hiệu un=5.23n2+33n1

Một học sinh chứng minh un luôn chia hết cho 19 như sau:

Bước 1: Khi n=1 ta có u1=5.21+32=19u119

Bước 2: Giả sử uk=5.23k2+33k+1  chia hết cho 19 với k1

Khi đó ta có uk+1=5.23k+1+33k+2=85.23k2+33k1+19.33k1

Bước 3: 5.23k2+33k1  19.33k1 chia hết cho 19 nên uk+1  chia hết cho 19,

Vậy un chia hết cho 19, n*

Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?

Xem đáp án » 30/09/2022 177

Câu 13:

Chứng minh rằng với mọi số nguyên dương n, ta có 11.2.3+12.3.4+...+1nn+1n+2=nn+34n+1n+2     (1)

Xem đáp án » 30/09/2022 172

Câu 14:

Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np  (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

Xem đáp án » 30/09/2022 172

Câu 15:

Cho hai dãy số un, (vn) được xác định như sau u1=3,v1=2  un+1=un2+2vn2vn=1=2un.vn với n2.Công thức tổng quát của hai dãy un và (vn)

Xem đáp án » 30/09/2022 162

Câu hỏi mới nhất

Xem thêm »
Xem thêm »