Cho parabol và đường thẳng và đường thẳng Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có các hoành độ dương.
Phương trình hoành độ giao điểm của đường thẳng (d) và parabol (P) là: .
.
Điều kiện để (d) cắt (P) tại hai điểm phân biệt là .
Gọi là hai nghiệm của phương trình (*), khi đó
Để (d) cắt (P) tại hai điểm phân biệt có hoành độ dương cần thêm điều kiện .
Vậy điều kiện để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có các hoành độ đều dương là: 5<m<6 .
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
2/ Bằng phép tính, xác định tọa độ giao điểm A và B của (P) và (d). Tính độ dài đoạn thẳng AB.
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=2x-m+3 và parabol (P): .
1. Tìm m để đường thẳng (d) đi qua điểm A(2; 0).
1. Cho parabol (P): và đường thẳng
a. Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ Oxy.
Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình và hai điểm A, B thuộc (P) có hoành độ lần lượt là .
a) Tìm tọa độ hai điểm A, B
b) Tìm m để đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với sao cho
Tìm m để đường thẳng đi qua điểm M(1;3). Khi đó hãy vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy.
b) Tìm tất cả các giá trị của m để (P) và (d) có một điểm chung duy nhất.