Thứ năm, 23/01/2025
IMG-LOGO

Câu hỏi:

21/07/2024 2,640

Cho tứ diện ABCD. Trên các cạnh AD,BC lần lượt lấy M,N sao cho AM=3MD;BN=3NC. Gọi P,Q lần lượt là trung điểm của AD,BC. Trong các khẳng định sau, khẳng định nào sai?

A. Các vec tơ BA,DC,MN đồng phẳng

B. Các vec tơ MN,DC,PQ đồng phẳng

C. Các vec tơ AB,DC,PQ đồng phẳng

D. Các vec tơ AC,DC,MN đồng phẳng

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

VietJack

VietJack

VietJack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ba vectơ a,b,c không đồng phẳng. Xét các vectơ x=2a+b;y=a-b-c,z=-3a-2c. Khẳng định nào dưới đây là đúng ?

Xem đáp án » 28/07/2021 15,373

Câu 2:

Cho tứ diện ABCD. Trên các cạnh AD và BC lần lượt lấy M, N sao cho AM=3MD, BN=3NC. Gọi P, Q lần lượt là trung điểm của AD và BC. Trong các khẳng định sau, khẳng định nào sai?

Xem đáp án » 31/07/2021 9,656

Câu 3:

Cho tứ diện ABCD. Đặt AB=a,AC=b,AD=c, gọi G là trọng tâm của tam giác BCD. Trong các đẳng thức sau, đẳng thức nào đúng?

Xem đáp án » 31/07/2021 7,482

Câu 4:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: MN=kAD+BC

Xem đáp án » 31/07/2021 5,438

Câu 5:

Cho hình tứ diện ABCD, trọng tâm G. Mệnh đề nào sau đây đúng?

Xem đáp án » 28/07/2021 4,873

Câu 6:

Cho tứ diện ABCD và điểm G thỏa mãn GA+GB+GC+GD=0 ( G là trọng tâm của tứ diện). Gọi G0 là giao điểm của GA và mp (BCD). Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 31/07/2021 4,366

Câu 7:

Cho hình tứ diện ABCD có trọng tâm G. Mệnh đề nào sau đây sai.

Xem đáp án » 31/07/2021 3,888

Câu 8:

Cho  ABCD.A1B1C1D1 là hình hộp, trong các khẳng định sau khẳng định sai:

Xem đáp án » 28/07/2021 2,650

Câu 9:

Cho hai điểm phân biệt A, B và một điểm O bất kỳ không thuộc đường thẳng AB. Mệnh đề nào sau đây là đúng?

Xem đáp án » 31/07/2021 2,569

Câu 10:

Cho tứ diện đều ABCD, M là trung điểm của cạnh AB và G là trọng tâm cuả tam giác BCD. Đặt AB=b,AC=c,AD=d. Phân tích véc tơ MG theo d,b,c

Xem đáp án » 31/07/2021 2,536

Câu 11:

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi G là điểm thỏa mãn: GS+GA+GB+GC+GD=0. Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 31/07/2021 1,787

Câu 12:

Cho tứ diện ABCD và điểm G thỏa mãn GA+GB+GC+GD=0. Gọi O là giao điểm của GA và mặt phẳng (BCD). Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 28/07/2021 926

Câu 13:

Trong mặt phẳng (α) cho tứ giác ABCD và một điểm S tùy ý. Mệnh đề nào sau đây đúng?

Xem đáp án » 28/07/2021 850

Câu 14:

Cho tứ diện ABCD. M là điểm trên đoạn AB và MB=2MA. N là điểm trên đường thẳng CD mà CN=kCD.Nếu MN,AD,BC đồng phẳng thì giá trị của k là:

Xem đáp án » 31/07/2021 760

LÝ THUYẾT

I. Định nghĩa và các phép toán về vecto trong không gian.

Cho đoạn thẳng AB trong không gian. Nếu ta chọn điểm đầu là A, điểm cuối là B ta có một vecto, được kí hiệu là AB.

1. Định nghĩa.

- Vecto trong không gian là một đoạn thẳng có hướng. Kí hiệu ABchỉ vecto có điểm đầu là A, điểm cuối là B. Vecto còn được kí hiệu là a;  b;  x;  y....

- Các khái niệm liên quan đến vecto như giá của vecto, độ dài của vecto, sự cùng phương, cùng hướng của vecto, vecto – không, sự bằng nhau của hai vecto ….được định nghĩa tương tự như trong mặt phẳng.

2. Phép cộng và phép trừ vecto trong không gian,

- Phép cộng và phép trừ của hai vecto trong không gian được định nghĩa tương tự như phép cộng và phép trừ hai vecto trong mặt phẳng.

- Phép cộng vecto trong không gian cũng có các tính chất như phép cộng vecto trong mặt phẳng. Khi thực hiện phép cộng vecto trong không gian ta vẫn có thể áp dụng quy tắc ba điểm, quy tắc hình bình hành như đối với vecto trong hình học phẳng.

Ví dụ 1. Cho tứ diện ABCD. Chứng minh DA+​  BC=  BA  +​  DC

Lời giải:

Bài 1 : Vectơ trong không gian (ảnh 1)

Áp dụng quy tắc ba điểm ta có: DA  =DC+CA

Ta có: DA+​  BC=DC+CA   +​  BC=  DC+​  BC+​  CA=  DC  +​  BA

( điều phải chứng minh).

II. Điều kiện đồng phẳng của ba vecto.

1. Khái niệm về sự đồng phẳng của ba vecto trong không gian.

Trong không gian cho ba vecto a;b;  c  0. Nếu từ một điểm O bất kì ta vẽ: OA  =a;OB  =b;OC=  c thì có thể xảy ra hai trường hợp:

+ Trường hợp các đường thẳng OA; OB; OC không cùng nằm trong một mặt phẳng, khi đó ta nói rằng ba vecto a;b;  c   không đồng phẳng.

+ Trường hợp các đường thẳng OA; OB; OC cùng nằm trong một mặt phẳng thì ta nói rằng ba vecto a;b;  c   đồng phẳng.

Trong trường hợp này, giá của các vecto a;b;  c   luôn luôn song song với một mặt phẳng.

Bài 1 : Vectơ trong không gian (ảnh 1)

- Chú ý. Việc xác định sự đồng phẳng hoặc không đồng phẳng của ba vecto nói trên không phụ thuộc vào việc chọn điểm O.

2. Định nghĩa:

Trong không gian ba vecto được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.

Bài 1 : Vectơ trong không gian (ảnh 1)

Ví dụ 2. Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành  ABEF  và K  là tâm hình bình hành BCGF. Chứng minh BD,IK,GF đồng phẳng .

Lời giải :

Bài 1 : Vectơ trong không gian (ảnh 1)

Xét  tam giác FAC có I ; K lần lượt là trung điểm của AF và FC nên IK là  đường trung bình của tam   giác.

 IK// AC nên  IK// mp ( ABCD) .

Vì BC// GF nên GF // mp( ABCD)

Ta có :IK//(ABCD)GF//(ABCD)BD(ABCD)  

 BD,IK,GF đồng phẳng.

3. Điều kiện để ba vecto đồng phẳng.

Định lí 1.

Trong không gian cho hai vecto a;bkhông cùng phương và vecto c. Khi đó, ba vecto a;  b;  c đồng phẳng khi và chỉ khi có cặp số m; n sao cho c  =  ma+n  b. Ngoài ra, cặp số m; n là suy nhất.

- Định lí 2.

Trong không gian cho ba vecto không đồng phẳng a;  b;  c. Khi đó, với mọi vecto x ta đều tìm được một bộ ba số m, n, p sao cho x  =ma+n  b+p  c. Ngoài ra, bộ ba số m; n; p là duy nhất.

Ví dụ 3. Cho hình lăng trụ ABC.A’B’C’ gọi M  là trung điểm của  BB’ . Đặt CA  =a;  CB=b;AA'=  c . Phân tích vecto AM theo a;  b;  c.

Lời giải:

Bài 1 : Vectơ trong không gian (ảnh 1)

 Áp dụng quy tắc 3 điểm và quy tắc hiệu hai vecto ta có :

AM=AB+BM=CBCA+12BB' ( BM  =  12BB' vì  M là  trung  điểm của BB’) .

=ba+12AA'=ba+12c.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »