Cho đa thức và đa thức
Tìm các giá trị nguyên của sao cho giá trị của đa thức chia hết cho giá trị của đa thức
Phương pháp:
Dựa vào quy tắc chia đa thức cho đa thức.
Cách giải:
Tìm các giá trị nguyên của sao cho giá trị của đa thức chia hết cho giá trị của đa thức
Điều kiện:
Ta có:
Để
Ta có bảng:
1 |
3 |
|||
(tm) |
0 (tm) |
(tm) |
2 (tm) |
Vậy với thì chia hết cho
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho nhọn . Kẻ đường cao Gọi là trung điểm của là điểm đối xứng của qua
Chứng minh: Tứ giác là hình chữ nhật.
Cho đa thức và đa thức
Tìm đa thức thương và đa thức dư của phép chia đa thức cho đa thức
Cho nhọn . Kẻ đường cao Gọi là trung điểm của là điểm đối xứng của qua
Gọi là giao điểm của và Chứng minh:
Cho nhọn . Kẻ đường cao Gọi là trung điểm của là điểm đối xứng của qua
Đường thẳng cắt tại Kẻ vuông góc với tại Chứng minh:
Cho nhọn . Kẻ đường cao Gọi là trung điểm của là điểm đối xứng của qua
Trên tia đối của tia lấy điểm sao cho là trung điểm của Gọi là điểm đối xứng với qua Chứng minh: Tứ giác là hình thoi.