IMG-LOGO

Câu hỏi:

19/07/2024 251

Cho hình bình hành ABCD, đường chéo lớn BD. Qua A kẻ đường thẳng cắt các đoạn thẳng BD, BC lần lượt tại E và F, cắt DC tại K.

a) Chứng minh AE2 = EF.EK.

b) Kẻ AHBD,  BNCD,  BMAD(HBD,  NCD,  MAD).

Chứng minh: ∆AHB đồng dạng với ∆BND và AD.DM + DC.DN = BD2.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình bình hành ABCD, đường chéo lớn BD. Qua A kẻ đường thẳng cắt các đoạn thẳng BD, BC lần lượt tại E và F, cắt DC tại K.  a) Chứng minh AE^2 = EF.EK. b) Kẻ AH vuông góc BD, BN vuông góc CD, BM vuông góc AD ( H thuộc BD, N thuộc CD, M thuộc BD)  .  Chứng minh: ∆AHB đồng dạng với ∆BND và AD.DM + DC.DN = BD^2. (ảnh 1)

Vì ABCD là hình bình hành nên:

+ AD // BC hay AD // BF

+ AB // CD hay AB // DK.

Áp dụng định lý Ta-let, ta có:

+ AD // BF suy ra: AEEF=EDEB  (1)

+ AB // DK suy ra: EDEB=EKAE (2)

Từ (1) và (2) suy ra: AEEF=EKAE.

Do đó AE2 = EF.EK (đpcm).

b) Xét ∆AHB ∆BND có:

AHB^=BND^=90o

ABH^=BDN^ (AB // DK, hai góc so le trong)

Do đó ∆AHB  ∆BND (g.g) (đpcm)

Suy ra ABBD=BHDNABBD=BHDN AB.DN = BD.BH

Mà AB = DC nên DC.DN = BD.BH (1)

Xét ∆ADH ∆BDM có:

AHD^=BMD^=90o

BDM^ chung.

Do đó ∆ADH ∆BDM (g.g).

Suy ra ADDB=DHDM AD.DM = DH.DB   (2)

Từ (1) và (2) suy ra: AD.DM + DC.DN = BD.BH + DH.DB = BD.(BH + HD)

= BD.BD = BD2.

Do đó AD.DM + DC.DN = BD2 (đpcm).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a, b, c đôi một khác nhau và 1a+1b+1c=0. Tính giá trị biểu thức: P=1a2+2bc+1b2+2ac+1c2+2ab.

Xem đáp án » 10/10/2022 358

Câu 2:

Lúc 6 giờ sáng một ô tô khởi thành từ A để đi đến B. Đến 7 giờ 30 phút một ô tô thứ hai cũng khởi hành từ A để đi đến B với vận tốc lớn hơn vận tốc ô tô thứ nhất là 20km/h và hai xe gặp nhau lúc 10 giờ 30 phút. Tính vận tốc mỗi ô tô? (ô tô không bị hư hỏng hay dừng lại dọc đường).

Xem đáp án » 10/10/2022 259

Câu 3:

Cho biểu thức:

P=(x2+1x29xx+3+53x):(2x+10x+31) với x ≠ 3, x ≠ −3, x ≠ −7.

a) Rút gọn P.

b) Tính P khi |x – 1| = 2.

c) Tìm x để P=x+56.

Xem đáp án » 10/10/2022 162

Câu 4:

Giải các phương trình sau:

a) 9x2 – 3 = (3x + 1)(2x – 3)

b) 3xx5+1x=4x+3x(x5)+3

Xem đáp án » 10/10/2022 157

Câu hỏi mới nhất

Xem thêm »
Xem thêm »