Cho hình chữ nhật ABCD có AB = 12 cm, AD = 9 cm. Gọi H là chân đường vuông góc kẻ từ A đến cạnh BD.
a) Chứng minh tam giác ADH đồng dạng với tam giác DBC và AD2 = HD.BD.
b) Tính độ dài HD và HB.
c) Tia phân giác của góc ADB cắt AH tại E và AB tại F. Chứng minh .
Ta có .
Tứ giác ABCD là hình chữ nhật nên AD // BD.
Suy ra (hai góc so le trong).
Xét ∆ADH và ∆DBC có:
(cmt)
Do đó ∆ADH ∆DBC (g.g)
Suy ra: mà AD = BC (vì tứ giác ABCD là hình chữ nhật)
AD2 = HD.BD.
Vậy ∆ADH ∆DBC và AD2 = HD.BD.
b) Áp dụng định lý Py-ta-go vào ∆ABD vuông tại A, ta có:
BD2 = AD2 + AB2 = 92 + 122 = 81 + 144 = 225
BD = 15 (cm).
Ta có AD2 = HD.BD
BH = BD – DH = 15 – 5,4 = 9,6 (cm).
Vậy DH = 5,4 cm; BH = 9,6 cm.
c) Xét ∆ADH có DE là tia phân giác của .
Áp dụng tính chất đường phân giác của tam giác, ta có:
mà AD = BC
Suy ra (1)
Xét ∆ADB có DF là tia phân giác của
Áp dụng tính chất đường phân giác của tam giác, ta có:
(2)
Mà (cmt) (3)
Từ (1), (2) và (3) suy ra: (đpcm).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một tổ sản xuất lập kế hoạch sản xuất một lô hàng, theo đó mỗi giờ phải làm 30 sản phẩm. Khi thực hiện, mỗi giờ tổ chỉ sản xuất được 27 sản phẩm, do đó tổ đã hoàn thành lô hàng chậm hơn so với dự kiến 1 giờ 10 phút. Hỏi số sản phẩm mà tổ sản xuất theo kế hoạch là bao nhiêu?
Giải các phương trình:
a) 7 + 2x = 22 – 3x
b) 2x3 + 6x2 = x2 + 3x
1) Tìm giá trị của m để phương trình 2x – m = 1 – x nhận giá trị x = –1 là nghiệm.
2) Rút gọn biểu thức với x ≠ 1, x ≠ –1 và x ≠ 2.