Cho bốn điểm phân biệt A, B, C, D thỏa mãn ABCD là hình thang cân và ABCD, I là giao điểm của AD và BC. Khẳng định nào sau đây sai?
Đáp án đúng là: D
Vì nên CD = 2AB và CD song song với AB. Do đó phương án B đúng.
Do CD = 2AB và CD song song với AB nên CD là đáy lớn và AB là đáy nhỏ của hình thang cân.
Khi đó I là giao điểm của AD và BC nên nằm ngoài hình thang cân.
Do đó phương án A đúng.
Xét DIDC có AB // CD nên ta có:
Mà AD = BC (tính chất hình thang cân)
Do đó IA = AD = IB = BC = ID = IC nên phương án C đúng.
Ta có suy ra CI = 2BI. Do đó phương án D là sai.
Vậy ta chọn phương án D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình bình hành ABCD có tâm I. Có bao nhiêu vectơ khác có độ dài bằng độ dài của vectơ ?
Cho tam giác cân ABC tại A. Gọi M, N lần lượt là trung điểm của các cạnh AB, AC. Cặp vectơ nào sau đây có độ dài bằng nhau?
Cho hình vẽ sau.
Hỏi trong hình có bao nhiêu vectơ khác cùng hướng với vectơ , có điểm đầu và điểm cuối là các điểm trong hình vẽ?
Cho lục giác đều ABCDEF tâm O. Số các vectơ khác và khác vectơ-không, cùng phương với có điểm đầu hoặc điểm cuối là các đỉnh của lục giác là:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm của AC. Khẳng định nào sau đây là đúng?