Cho 2 số thực dương a, b thỏa a+b≤1 . Tìm GTNN của A=1a2+b2 +1ab+4ab
A=1a2+b2 +12ab+4ab+14ab+14ab≥21a2+b22ab +24ab.14ab+14ab≥2.1a2+b2+2ab2+2+14ab=4a+b2+2+14ab
≥4a+b2+2+14a+b22 Do ab≤a+b22
≥5a+b2+2≥51+2=7
Dấu “=” xảy ra ⇔a2+b2=2ab4ab=14aba=ba+b=1⇔a=b=1 2
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
ĐĂNG KÝ VIP
Cho 2 số thực dương a, b. Tìm GTNN của A=a+bab +aba+b
Cho 3 số thực dương a, b, c thỏa a+b+c≤32 .
Tìm GTNN của A=a2+b2+c2+1a +1b+1c
Cho 2 số thực dương a, b thỏa a+b≤1 .. Tìm GTNN của A=a+b+1a +1b
Cho 3 số thực dương a, b, c.
Tìm GTNN của A=ab+c+bc+a+ca+b+b+ca +c+ab+a+bc
Cho 2 số thực dương a, b thỏa a+b≤1 .
Cho đoạn thẳng AB và một điểm C trên AB .Vẽ trên cùng một nửa mặt phẳng bờ AB các nửa đường tròn có đường kính AB,AC,BC . Xác định vị trí của điểm C trên đoạn AB để diện tích phần giới hạn bởi ba nửa đường tròn đó dạt giá trị lớn nhất.
Cho DABC nội tiếp đường tròn (O) D là điểm bất kỳ thuộc cung BC không chứa A và không trùng với B,C. Gọi H,I,K theo thứ tự là chân các đường vuông góc kẻ từ D đến các đường thẳng BC , AC, AB . Đặt BC = a , AC = b ,AB = c, DH = x , DI = y , DK = z .Tìm vị trí của điểm D để tổng ax+by+cz nhỏ nhất
Cho DABC nội tiếp đường tròn (O) D là điểm bất kỳ thuộc cung BC không chứa A và không trùng với B,C. Gọi H,I,K theo thứ tự là chân các đường vuông góc kẻ từ D đến các đường thẳng BC , AC, AB . Đặt BC = a , AC = b ,AB = c, DH = x , DI = y , DK = z . Chứng minh rằng :by+cz=ax
Cho đường tròn (O;R) đường kính BC , A là một điểm di động trên đường tròn . Vẽ tam giác đều ABM có A và M nằm cùng phía đối với BC . Gọi H là chân đường vuông góc kẻ từ C xuống MB. Gọi D, E , F, G theo thứ tự là trung điểm của OC, CM, MH, OH . Xác định vị trí của điểm A để diện tích tứ giác DEFG đạt giá trị lớn nhất.
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A .Qua A vẽ hai tia vuông góc với nhau , chúng cắt các đường tròn (O) , (O’) lần lượt tại B và C. Xác định vị trí của các tia đó để D ABC có diện tích lớn nhất .
Cho hình vuông ABCD cạnh a .Vẽ cung BD tâm A bán kính a (nằm trong hình vuông ) .một tiếp tuyến bất kỳ với cung đó cắt BC, CD theo thứ tự ở M và N. Tính độ dài nhỏ nhất của MN.
Cho nửa đường tròn có đường kính AB = 10 cm .Một dây CD có độ dài 6cm có hai đầu di chuyển trên nửa đường tròn . Gọi E và F theo thứ tự là hình chiếu của A và B trên CD. Tính diện tích lớn nhất của tứ giác ABFE.