Cho một hình vuông cạnh bằng 2. Giả sử \(\sqrt 2 \) ≈ 1,41, tính độ dài đường chéo của hình vuông và ước lượng độ chính xác của kết quả tìm được. Biết 1,41 < \(\sqrt 2 \) < 1,42.
Hướng dẫn giải:
Đáp án đúng là: B
Gọi đường chéo của hình vuông trên là x.
Độ dài đường chéo của hình vuông cạnh bằng 2 là: \(\overline x \) = \(\sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Với \(\sqrt 2 \) ≈ 1,41, độ dài gần đúng của đường chéo hình vuông là: x = 2 . 1,41 = 2,82.
Ta có :
1,41 < \(\sqrt 2 \) < 1,42 ⇔ 2.1,41 < \(2\sqrt 2 \) < 2.1,42 ⇔ 2,82 < \(\overline x \) < 2,84
Do đó: \(\overline x \) – x = \(\overline x \) – 2,82 < 2,84 – 2,82 < 0,02
Suy ra ∆x = |\(\overline x \) – x| < 0,02.
Vậy độ dài gần đúng đường chéo của hình vuông là 2,82 với độ chính xác 0,02.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong thư viện có 12 quyển sách gồm 3 quyển Toán giống nhau, 3 quyển Lý giống nhau, 3 quyển Hóa giống nhau và 3 quyển Sinh giống nhau. Xác suất 3 quyển sách thuộc cùng 1 môn không được xếp liền nhau ?
Mẫu số liệu thống kê kết quả 5 bài kiểm tra của bạn Lan và Hoa lần lượt là:
Lan: 8; 9; 7; 10; 7
Hoa: 9; 6; 7; 9; 10
Bạn nào có kết quả kiểm tra đồng đều hơn ?
Gieo ba con xúc xắc. Xác suất để số chấm xuất hiện trên ba con xúc xắc như nhau là:
Tốc độ phát triển của một loại virus trong 10 ngày với các điều kiện khác nhau (đơn vị: nghìn con) được thống kê lại như sau:
20 |
100 |
30 |
980 |
440 |
20 |
20 |
150 |
60 |
270 |
Trong trường hợp này, ta nên chọn số nào dưới đây làm giá trị đại diện là tốt nhất? Tính giá trị đại diện đó.
Bài tập cuối chương VI