Với giá trị nào của m thì đường thẳng ∆: 4x + 3y + m = 0 tiếp xúc với đường tròn (C): x2 + y2 – 9 = 0?
Hướng dẫn giải
Đáp án đúng là: D
Đường tròn (C) có tâm O(0; 0), bán kính R = 3.
Vì ∆ tiếp xúc với (C) nên ta có d(O, ∆) = R.
\( \Leftrightarrow \frac{{\left| {4.0 + 3.0 + m} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 3\)
⇔ |m| = 15
⇔ m = 15 hoặc m = –15.
Vậy m = 15 hoặc m = –15 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho đường tròn (C): x2 + y2 + 2x – 6y + 5 = 0. Phương trình tiếp tuyến của (C) song song với đường thẳng d: x + 2y – 15 = 0 là:
Cho đường tròn (C): x2 + y2 – 4x – 6y + 5 = 0. Đường thẳng d đi qua điểm A(3; 2) và cắt (C) theo một dây cung ngắn nhất có phương trình là:
Đường tròn (C) đi qua hai điểm A(1; 3), B(3; 1) và có tâm nằm trên đường thẳng d: 2x – y + 7 = 0 có phương trình là:
Bài 5. Phương trình đường tròn