Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
Hướng dẫn giải
Đáp án đúng là: A
Chọn A(0; 1) ∈ ∆.
Đường thẳng ∆ có vectơ pháp tuyến \(\vec n = \left( {1;1} \right)\).
Suy ra đường thẳng ∆ nhận \(\vec u = \left( {1; - 1} \right)\) làm vectơ chỉ phương.
Đường thẳng ∆ đi qua A(0; 1) và có vectơ chỉ phương \(\vec u = \left( {1; - 1} \right)\).
Suy ra phương trình tham số của ∆: \(\left\{ \begin{array}{l}x = t\\y = 1 - t\end{array} \right.\)
Ta có M ∈ ∆. Suy ra M(t; 1 – t).
Ta có \(\overrightarrow {NM} = \left( {t + 1; - 2 - t} \right)\).
Suy ra \(NM = \left| {\overrightarrow {NM} } \right| = \sqrt {{{\left( {t + 1} \right)}^2} + {{\left( { - 2 - t} \right)}^2}} \).
Theo đề, ta có MN = 5.
⇔ (t + 1)2 + (–2 – t)2 = 25.
⇔ t2 + 2t + 1 + 4 + 4t + t2 = 25.
⇔ 2t2 + 6t – 20 = 0.
⇔ t = 2 hoặc t = –5.
Với t = 2, ta có tọa độ M(2; –1).
Với t = –5, ta có tọa độ M(–5; 6).
Vậy ta chọn phương án A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai điểm A(2; 2), B(5; 1) và đường thẳng ∆: x – 2y + 8 = 0. Lấy điểm C ∈ ∆. Điểm C có hoành độ dương sao cho diện tích tam giác ABC bằng 17. Tọa độ của C là:
Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Đường thẳng d: x = –4 cắt (E) tại hai điểm M, N. Khi đó:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(3; 4), B(2; 1), C(–1; –2). Cho M(x; y) trên đoạn thẳng BC sao cho SABC = 4SABM. Khi đó x2 – y2 bằng:
Cho đường tròn (C): x2 + y2 + 2x – 6y + 5 = 0. Phương trình tiếp tuyến của (C) song song với đường thẳng d: x + 2y – 15 = 0 là:
Bài 7. Bài tập cuối chương VII