Tính: \[D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{{\rm{cos}}\frac{{7\pi }}{9} - \cos \frac{\pi }{9}}}\].
Áp dụng công thức biến đổi tổng thành tích ta có:
\[\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9} = 2\sin \frac{{\frac{{7\pi }}{9} + \frac{\pi }{9}}}{2}\cos \frac{{\frac{{7\pi }}{9} - \frac{\pi }{9}}}{2} = 2\sin \frac{{4\pi }}{9}\cos \frac{\pi }{3}\];
\[{\rm{cos}}\frac{{7\pi }}{9} - \cos \frac{\pi }{9} = - 2\sin \frac{{\frac{{7\pi }}{9} + \frac{\pi }{9}}}{2}\sin \frac{{\frac{{7\pi }}{9} - \frac{\pi }{9}}}{2} = - 2\sin \frac{{4\pi }}{9}\sin \frac{\pi }{3}\].
Khi đó: \[D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{{\rm{cos}}\frac{{7\pi }}{9} - \cos \frac{\pi }{9}}}\]
\( = \frac{{2\sin \frac{{4\pi }}{9}\cos \frac{\pi }{3}}}{{ - 2\sin \frac{{4\pi }}{9}\sin \frac{\pi }{3}}} = - \frac{{\cos \frac{\pi }{3}}}{{\sin \frac{\pi }{3}}} = - \cot \frac{\pi }{3} = - \frac{{\sqrt 3 }}{3}\).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tính:
A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);
\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).
Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.
Cho \(\cos a = \frac{2}{3}\). Tính \(B = \cos \frac{{3a}}{2}\cos \frac{a}{2}\).
Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình 17).
Tìm góc α (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
Tính sin(a – b) bằng cách biến đổi sin(a – b) = sin[a + (‒b)] và sử dụng công thức (*).
Khi các biểu thức đều có nghĩa, hãy tính tan (a – b) bằng cách biến đổi \[tan\left( {a - b} \right) = tan\left[ {a + \left( { - b} \right)} \right]\] và sử dụng công thức tan(a + b) có được ở bài trước
Sử dụng công thức cộng, rút gọn mỗi biểu thức sau:
cos(a + b) + cos(a – b); cos(a + b) – cos(a – b); sin(a + b) + sin(a – b).
Sử dụng công thức biến đổi tích thành tổng và đặt a + b = u; a − b = v rồi biến đổi các biểu thức sau thành tích: cosu + cosv; cosu – cos v; sinu + sinv; sinu – sinv.
Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).