Chủ nhật, 16/02/2025
IMG-LOGO

Câu hỏi:

20/07/2024 85

Xét sự biến thiên của hàm số sau trên các khoảng tương ứng:

y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Xét hàm số y = cosx:

Do (‒20π; ‒19π) = (0 ‒ 20π; π ‒ 20π) nên hàm số y = cosx nghịch biến trên khoảng (‒20π; ‒19π).

Do (‒9π; ‒8π) = (‒π – 8π; 0 ‒ 8π) nên hàm số y = cosx đồng biến trên khoảng (‒9π; ‒8π).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = tanx nhận giá trị bằng ‒1;

Xem đáp án » 12/04/2024 144

Câu 2:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = cosx nhận giá trị bằng ‒1;

Xem đáp án » 12/04/2024 120

Câu 3:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = sinx nhận giá trị bằng 1;

Xem đáp án » 12/04/2024 118

Câu 4:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m ℝ, có bao nhiêu giá trị \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho tanα = m;

Xem đáp án » 12/04/2024 115

Câu 5:

Xét tính chẵn, lẻ của các hàm số:

a) y = sinx cosx;

b) y = tanx + cotx;

c) y = sin2x.

Xem đáp án » 12/04/2024 107

Câu 6:

Quan sát đồ thị hàm số y = cotx ở Hình 31.

Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ (ảnh 1)

Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cotx.

Xem đáp án » 12/04/2024 104

Câu 7:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = tanx nhận giá trị bằng 0;

Xem đáp án » 12/04/2024 104

Câu 8:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = cotx nhận giá trị bằng 0.

Xem đáp án » 12/04/2024 100

Câu 9:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m ℝ, có bao nhiêu giá trị α (0; π) sao cho cotα = m.

Xem đáp án » 12/04/2024 98

Câu 10:

Làm tương tự như trên đối với các khoảng (π; 2π), (‒π; 0), (‒2π; ‒π), …, ta có đồ thị hàm số y = cotx trên E được biểu diễn ở Hình 31.

Làm tương tự như trên đối với các khoảng (pi; 2pi), (-pi; 0), (-2pi; -pi), ta có đồ thị  (ảnh 1)

Xem đáp án » 12/04/2024 93

Câu 11:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = cosx nhận giá trị bằng 0.

Xem đáp án » 12/04/2024 93

Câu 12:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m [‒1;1], có bao nhiêu giá trị α [0; π] sao cho cosα = m

Xem đáp án » 12/04/2024 93

Câu 13:

Quan sát đồ thị hàm số y = cotx ở Hình 31.

Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx (ảnh 1)

Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx.

Xem đáp án » 12/04/2024 90

Câu 14:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = sinx nhận giá trị bằng 0;

Xem đáp án » 12/04/2024 86

Câu 15:

Quan sát đồ thị hàm số y = sinx ở Hình 24.

Tìm khoảng đồng biến, nghịch biến của hàm số y = sinx (ảnh 1)

Tìm khoảng đồng biến, nghịch biến của hàm số y = sinx.

Xem đáp án » 12/04/2024 80

Câu hỏi mới nhất

Xem thêm »
Xem thêm »