Cho ΔABC có đường cao AD, CE và trực tâm H.
1. Chọn câu trả lời đúng nhất.
A. ΔADB ~ ΔCDH
B. ΔABD ~ ΔCBE
C. Cả A, B đều đúng
D. Cả A, B đều sai
Đáp án C
Xét tam giác ABD và CBE có:
Chung góc B
=> ΔABD ~ ΔCBE (g - g)
=> (góc t/ư)
Xét ΔADB và ΔCDH có:
(cmt)
=> ΔADB ~ ΔCDH (g - g)
Vậy A, B đều đúng
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho ΔABC có các đường cao BD và CE cắt nhau tại H. Gọi M là giao của AH với BC.
2. Chọn khẳng định sai.
Cho hình thang ABCD (AB // CD) có góc , AB = 2cm, BD = cmm, ta có:
Cho hai tam giác ABC và FED có , cần thêm điều kiện gì dưới đây để hai tam giác (thứ tự đỉnh như vậy) đồng dạng theo trường hợp góc - góc?
Cho ΔABC có các đường cao BD và CE cắt nhau tại H. Gọi M là giao của AH với BC.
1. Chọn câu đúng.
Cho tam giác ABC cân tại A. Trên cạnh AC lấy điểm M, trên đoạn thẳng BM lấy điểm K sao cho góc .
2. Tính MB.MK bằng
Cho hình thang vuông ABCD () có BC BD, AB = 4cm, CD = 9cm. Độ dài BD là:
Cho tam giác ABC cân tại A. Trên cạnh AC lấy điểm M, trên đoạn thẳng BM lấy điểm K sao cho góc .
1. Tam giác MBC đồng dạng với tam giác
Cho tam giác ABC vuông tại A có: AB = 5, AC = 12. Trên cạnh BC lấy điểm M sao cho . Qua M kẻ đường thẳng vuông góc với AC tại N. Độ dài MN là:
1. Định lí
- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.
- Ví dụ 1. Cho tam giác ABC và các đường cao BH, CK. Chứng minh ∆ABH ∆ ACK.
Lời giải:
Xét ∆ABH và ∆ACK có:
Suy ra: ∆ABH ∆ ACK.