Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

08/07/2024 306

Từ một hộp có 13 bóng đèn, trong đó có 6 bóng hỏng, lấy ngẫu nhiên 5 bóng ra khỏi hộp. Tính xác suất sao cho có ít nhất 1 bóng tốt?

A. 213429.

B. 326429.

C. 427429.

Đáp án chính xác

D. 197429.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Chọn C.

Chọn 5 bòng đèn trong 13 bóng có C135 cách. Vậy không gian mẫu n(Ω)=C135.

Gọi biến cố B “Chọn được 5 bóng và có ít nhất một bóng tốt”.

Gọi biến cố B “Chọn được 5 bóng đều không tốt” có nghĩa cả 5 bóng đều hỏng, số cách thuận lợi cho B là n(B)=C65.

Dễ thấy B và B là hai biến cố đối nên xác suất cần tìm là:

P(B)=1-P(B)=1-C65C135=427429.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một hộp đựng 15 viên bi, trong đó có 7 viên bi xanh và 8 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi (không kể thứ tự ra khỏi hộp). Tính xác suất để trong 3 viên bi lấy ra có ít nhất một viên bi đỏ.

Xem đáp án » 27/03/2022 8,608

Câu 2:

Ba xạ thủ bắn vào mục tiêu một cách độc lập với nhau. Xác suất bắn trúng của xạ thủ thứ nhất, thứ hai và thứ ba lần lượt là 0,6; 0,7; 0,8. Xác suất để có ít nhất một xạ thủ bắn trúng là

Xem đáp án » 27/03/2022 4,576

Câu 3:

Túi I chứa 3 bi trắng, 7 bi đỏ, 15 bi xanh. Túi II chứa 10 bi trắng, 6 bi đỏ, 9 bi xanh. Từ mỗi túi lấy ngẫu nhiên 1 viên bi. Tính xác suất để lấy được hai viên cùng màu.

Xem đáp án » 27/03/2022 3,630

Câu 4:

Từ một hộp có 13 bóng đèn, trong đó có 6 bóng hỏng, lấy ngẫu nhiên 5 bóng ra khỏi hộp. Tính xác suất sao cho có nhiều nhất 2 bóng hỏng.

Xem đáp án » 27/03/2022 3,240

Câu 5:

Một lớp học có 100 học sinh, trong đó có 40 học sinh giỏi ngoại ngữ; 30 học sinh giỏi tin học và 20 học sinh giỏi cả ngoại ngữ và tin học. Học sinh nào giỏi ít nhất một trong hai môn sẽ được thêm điểm trong kết quả học tập của học kì. Chọn ngẫu nhiên một trong các học sinh trong lớp, xác suất để học sinh đó được tăng điểm là

Xem đáp án » 27/03/2022 3,210

Câu 6:

Một chiếc ôtô với hai động cơ độc lập đang gặp trục trặc kĩ thuật. Xác suất để động cơ 1 gặp trục trặc là 0,5. Xác suất để động cơ 2 gặp trục trặc là 0,4. Biết rằng xe chỉ không thể chạy được khi cả hai động cơ bị hỏng. Tính xác suất để xe đi được.

Xem đáp án » 27/03/2022 2,798

Câu 7:

Xác suất bắn trúng đích của một người bắn súng là 0,6. Xác suất để trong ba lần bắn độc lập người đó bắn trúng đích đúng một lần.

Xem đáp án » 27/03/2022 2,590

Câu 8:

Một chiếc tàu khoan thăm dò dầu khí trên thềm lục địa có xác suất khoan trúng túi dầu là 0,4. Xác suất để trong 5 lần khoan độc lập, chiếc tàu đó khoan trúng túi dầu ít nhất một lần.

Xem đáp án » 27/03/2022 1,306

Câu 9:

Một máy bay có 5 động cơ trong đó cánh phải có 3 động cơ, cánh trái có 2 động cơ. Xác suất bị trục trặc của mỗi động cơ cánh phải là 0,1, mỗi động cơ cánh trái là 0,05. Các động cơ hoạt động độc lập. Tính xác suất có đúng 4 động cơ hỏng.

Xem đáp án » 27/03/2022 836

Câu 10:

Hai xạ thủ bắn mỗi người một viên đạn vào bia, biết xác suất bắn trúng vòng 10 của xạ thủ thứ nhất là 0,75 và của xạ thủ thứ hai là 0,85. Tính xác suất để có ít nhất một viên trúng vòng 10

Xem đáp án » 27/03/2022 635

Câu 11:

Có 5 bông hoa hồng bạch, 7 bông hoa hồng nhung và 4 bông hoa cúc vàng. Chọn ngẫu nhiên 3 bông hoa. Tính xác suất để 3 bông hoa được chọn không cùng một loại.

Xem đáp án » 27/03/2022 620

Câu 12:

Hai cầu thủ bóng đá sút phạt đền, mỗi người được sút một quả với xác suất bàn tương ứng là 0,8 và 0,7. Tính xác suất để chỉ có 1 cầu thủ làm bàn.

Xem đáp án » 27/03/2022 386

Câu 13:

Ba người cùng bắn vào 1 bia Xác suất để người thứ nhất, thứ hai, thứ ba bắn trúng đích lần lượt là 0,8;  0,6; 0,5. Xác suất để có đúng 2 người bắn trúng đích bằng

Xem đáp án » 27/03/2022 283

Câu 14:

Ba người cùng bắn vào 1 bi A. Xác suất để người thứ nhất, thứ hai, thứ ba bắn trúng đích lần lượt là 0,8; 0,6; 0,5. Xác suất để có đúng 2 người bắn trúng đích bằng

Xem đáp án » 27/03/2022 217

Câu hỏi mới nhất

Xem thêm »
Xem thêm »