Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:
\(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).
Khi quay một vòng lần thứ nhất tính từ thời điểm t = 0 (phút), tại thời điểm nào của t thì cabin ở vị trí cao nhất? Ở vị trí đạt được chiều cao là 86 m?
+ Khi quay một vòng, cabin ở vị trí cao nhất khi h(t) đạt giá trị lớn nhất.
Ta có \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
Với mọi t ≥ 0 thì \( - 1 \le \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) \le 1\), do đó h(t) đạt giá trị lớn nhất khi \(\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = 1\) hay t = 7,5 (phút).
Vậy khi quay một vòng lần thứ nhất tính từ thời điểm t = 0 (phút), tại thời điểm t = 7,5 phút thì cabin ở vị trí cao nhất.
+ Ta có cabin đạt được chiều cao là 86 m khi h(t) = 86 hay \(57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5 = 86\), tức là \(\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2}\) hay t = 5 (phút).
Vậy cabin đạt được chiều cao là 86 m lần đầu tiên khi t = 5 (phút).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:
\(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).
Khi t = 0 (phút) thì khoảng cách từ cabin đến mặt đất bằng bao nhiêu?
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:
\(y = \frac{1}{{4 - \sin x}}\).
Từ đồ thị hàm số y = sin x, tìm:
Các khoảng giá trị của x để hàm số y = sin x nhận giá trị dương.Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
y = sin x trên khoảng \(\left( { - \frac{{19\pi }}{2};\, - \frac{{17\pi }}{2}} \right),\,\,\left( { - \frac{{13\pi }}{2};\, - \frac{{11\pi }}{2}} \right)\);
Từ đồ thị hàm số y = sin x, tìm:
Các giá trị của x để sin x = \(\frac{1}{2}\);
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
y = cosx trên khoảng (19π; 20π), (– 30π; – 29π).
Từ đồ thị hàm số y = cos x, cho biết:
Có bao nhiêu giá trị của x trên đoạn [ – 5π; 0] để cos x = 1;
Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:
\(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).
Tính chu kì của hàm số h(t)?
Từ đồ thị hàm số y = cos x, cho biết:
Có bao nhiêu giá trị của x trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{3\pi }}{2}} \right)\) để cos x = 0.
Tìm tập xác định của các hàm số:
\(y = \frac{1}{{\sin x + \cos x}}\);
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:
y = 4 – 2sin x cos x;