Với mọi số nguyên dương n, tổng là:
A.
B.
C.
D. Đáp án khác
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Bất đẳng thức nào sau đây đúng? Với mọi số tự nhiên n thỏa mãn thì:
Với mọi số nguyên dương , ta có: , trong đó a, b là các số nguyên. Tính các giá trị của biểu thức
I. Phương pháp quy nạp toán học
Để chứng minh những mệnh đề liên quan đến số tự nhiên là đúng với mọi n mà không thể thử trực tiếp được thì có thể làm như sau:
- Bước 1. Kiểm tra mệnh đề đúng với n = 1.
- Bước 2. Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1 (gọi là giả thiết quy nạp), chứng minh rằng nó cũng đúng với n = k + 1.
Đó là phương pháp quy nạp toán học, hay còn gọi tắt là phương pháp quy nạp.
II. Ví dụ áp dụng
- Ví dụ 1. Chứng minh với mọi số tự nhiên n ≥ 1 ta có:
(*)
Lời giải:
Bước 1: Với n = 1 ta có:
Vế trái = 1 và vế phải = 1
Vậy hệ thức đúng với n = 1.
Bước 2: Giả sử hệ thức đúng với một số tự nhiên bất kì n = k ≥ 1 tức là:
(1)
Ta cần chứng minh hệ thức đúng với n = k + 1, tức là:
(2)
Thật vậy:
Vế trái = 1 + 2 + 3+ … + k + k + 1
(Do đẳng thức (1))
Vậy hệ thức đã cho đúng với mọi số tự nhiên n ≥ 1.
- Ví dụ 2. Chứng minh rằng với , ta có bất đẳng thức
Lời giải:
- Với n = 1, bất đẳng thức cho trở thành: (đúng).
Vậy bất đẳng thức cho đúng với n = 1.
- Giả sử bất đẳng thức cho đúng với mọi số tự nhiên n = k ≥ 1, tức là :
(1)
-Ta chứng minh bất đẳng thức cho đúng với n = k + 1, tức là :
(2)
Thật vậy, ta có :
(theo (1))
Ta chứng minh:
(do hai vế đều dương)
Hay (2k + 1).(2k + 3) < (2k + 2)2
4k^2 + 6k + 2k + 3 < 4k^2 + 8k + 4
3 < 4 (luôn đúng)
Vậy bất đẳng thức đã cho đúng với mọi số tự nhiên n ≥ 1.
- Chú ý:
Nếu phải chứng minh mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là một số tự nhiên) thì:
+ Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p;
+ Ở bước 2, ta giả thiết mệnh đề đúng với số tự nhiên bất kì n = k ≥ p và phải chứng minh rằng nó cũng đúng với n = k + 1.