Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 1,598

Biết rằng S=1+2.3+3.32+...+11.310=a+21.3b4. Tính P=a+b4.  

A. P =1

B. P =2 

C. P =3 

Đáp án chính xác

D.P = 4 

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Chọn C

Từ giả thiết suy ra 3S=3+2.32+3.33+...+11.311. Do đó 

2S=S3S=1+3+32+...+31011.311=1.13111311.311=1221.3112S=14+214.311.

vì 

S=14+21.3114=a+21.3b4a=14,  b=11P=14+114=3.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số nhân (un) với u1=12; u7=32. Tìm q 

Xem đáp án » 27/03/2022 16,958

Câu 2:

Tìm x để các số 2; 8; x; 128 theo thứ tự đó lập thành một cấp số nhân.

Xem đáp án » 27/03/2022 4,745

Câu 3:

Cho cấp số nhân (un) với  u1= 4 ; q = -4  Viết 3 số hạng tiếp theo và số hạng tổng quát un?

Xem đáp án » 27/03/2022 4,666

Câu 4:

Tính các tổng sau Sn=8+88+888+...+88...8nso8

Xem đáp án » 27/03/2022 4,426

Câu 5:

Dãy số (un) có phải là cấp số nhân không ? Nếu phải hãy xác định số công bội ? Biết rằng un = 4.3n  

Xem đáp án » 27/03/2022 3,339

Câu 6:

Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

Xem đáp án » 27/03/2022 2,942

Câu 7:

Cho cấp số nhân (un) với u1=3; q=2. Số 192 là số hạng thứ mấy của (un) ?

Xem đáp án » 27/03/2022 1,497

Câu 8:

Tính tổng sau Sn=2+122+4+142+...+2n+12n2

Xem đáp án » 27/03/2022 1,389

Câu 9:

Cho  các dãy số sau

1.un=3n15

2.un = 3n -1 

3.un=2n13

4.un = n3

Hỏi có bao nhiêu dãy số là cấp số nhân ?

Xem đáp án » 27/03/2022 1,300

Câu 10:

Cho dãy số un=4n+n với mọi n≥1. Khi đó số hạng un+1 của dãy là:

Xem đáp án » 27/03/2022 1,072

Câu 11:

Ba số x, y, z theo thứ tự lập thành một cấp số nhân với công bội q khác 1 ; đồng thời các số x ; 2y ; 3z theo thứ tự lập thành một cấp số cộng với công sai khác 0. Tìm giá trị của q.

Xem đáp án » 27/03/2022 955

Câu 12:

Cho dãy số (un) với un=3n2+1.Số 19683 là số hạng thứ mấy của dãy số

 

Xem đáp án » 27/03/2022 779

Câu 13:

Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội q0. Mệnh đề nào sau đây là đúng?

Xem đáp án » 27/03/2022 736

Câu 14:

Cho cấp số nhân: 15; a; 1125. Giá trị của a là:

Xem đáp án » 27/03/2022 719

Câu 15:

Mệnh đề nào dưới đây sai?

Xem đáp án » 27/03/2022 711

LÝ THUYẾT

I. Định nghĩa

- Cấp số nhân là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng đứng ngay trước nó với một số không đổi q.

Số q được gọi là công bội của cấp số nhân.

- Nếu (un) là cấp số nhân với công bội q, ta có công thức truy hồi:

un + 1 = un. q với n  *.

- Đặc biệt

Khi q = 0, cấp số nhân có dạng u1, 0, 0, …., 0,…..

Khi q = 1, cấp số nhân có dạng u1, u1, u1, …., u1,…

Khi u1 = 0 thì với mọi q, cấp số nhân có dạng 0, 0, 0, 0, 0,…, 0..

- Ví dụ 1. Dãy số hữu hạn sau là một cấp số nhân: 2, 4, 8, 16, 32 với số hạng đầu u1 = 2 và công bội q = 2.

II. Số hạng tổng quát.

- Định lí: Nếu cấp số nhân có số hạng đầu u1 và công bội q thì số hạng tổng quát un được xác định bởi công thức: un = u1.qn - 1 với n ≥ 2.

- Ví dụ 2. Cho cấp số nhân (un) với u1 = – 1; q = – 2.

a) Tính u6;

b) Hỏi 128 là số hạng thứ mấy.

Lời giải:

a) Ta có: u6 = u1. q5 = –1. (– 2)5 = 32.

b) Ta có: un = u1.qn - 1 nên 128 = – 1. (– 2)n - 1

(– 2)^n - 1 = – 128 = (– 2)7.

n – 1 = 7 nên n = 8.

Vậy 128 là số hạng thứ 8.

III. Tính chất các số hạng của cấp số nhân

- Định lí: Trong một cấp số nhân, bình phương của mỗi số hạng (trừ số hạng đầu và cuối) đều là tích của hai số hạng đứng kề với nó, nghĩa là:

 uk2  =uk1.uk+1  ;  k2( hay uk  =  uk1.uk+1 ).

IV. Tổng n số hạng đầu của một cấp số nhân.

- Định lí: Cho cấp số nhân (un) với công bội q ≠ 1. Đặt Sn = u1 + u2 + …+ un .

Khi đó: Sn  =   u1(1qn)1  q.

- Chú ý: Nếu q = 1 thì cấp số nhân là u1, u1, u1,….u1,….Khi đó, Sn = n.u1.

Ví dụ 3. Cho cấp số nhân (un) biết u1 = 3; u2 = 9. Tính tổng của 8 số hạng đầu tiên?

Lời giải:

Ta có: u2 = u1.q nên 9 = 3q.

Suy ra, công bội q = 3.

Khi đó, tổng của 8 số hạng đầu tiên là:

S8  =   u1(1q8)1  q  =  3.(138)13  =  9840.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »