Cho điểm M(5;2) và đường thẳng (d): 3x – y + 2 = 0. Tìm ảnh của M qua phép đối xứng qua đường thẳng (d)
A. (–5;4)
B. (5;4)
C. (4;5)
D. (–4;5)
Đáp án D
+ Gọi (d1) là đường thẳng đi qua M(5 ; 2) và vuông góc với d.
Khi đó, đường thẳng (d1) có vecto chỉ phương là ( 3; -1) nên có vecto pháp tuyến (1; 3)
Phương trình đường thẳng (d1) là :
1. (x - 5) + 3. ( y - 2 ) = 0 hay x+ 3y -11 = 0
+ Giao điểm của d và (d1) là nghiệm hệ phương trình:
+ Đối xứng qua đường thẳng d biến M thành M' nên I là trung điểm của MM'
suy ra:
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho đường thẳng d: 2x + y – 1 = 0. Phương trình đường thẳng d’ đối xứng với d qua gốc tọa độ là:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(0;−1) , bán kính R = 3. Ảnh của (C) qua việc thực hiện liên tiếp phép quay tâm O góc quay 180và phép vị tự tâm O tỉ số 2, phép tịnh tiến theo vectơ
Trong mp Oxy, cho parabol (P) : y = + 2x . Phương trình của parabol (Q) đối xứng với (P) qua gốc tọa độ O là:
Trong mp Oxy, cho M(–2;3). Hỏi M là ảnh của điểm nào trong các điểm sau qua phép đối xứng qua trục Oy
Cho (d): x + 2y – 5 = 0. Ảnh của (d) qua phép vị tự tâm I(−2;4) tỉ số k = là
Cho (d): 3x – 6y + 1 = 0. Phương trình đường thẳng d’ đối xứng với d qua gốc O là:
Trong mặt phẳng Oxy, cho I(–2;1) và đường thẳng (d): 2x + 2y – 7 = 0. Ảnh của (d) qua phép đối xứng tâm I là đường thẳng có phương trình:
Trong mp Oxy, cho M(–2;3). Hỏi M là ảnh của điểm nào trong các điểm sau qua phép đối xứng qua đường thẳng x + y = 0?
Cho đtròn (C) : và đường thẳng (d): y=–x+1. Gọi (C’) là ảnh của (C) qua Đd. Phương trình của (C’) là
Cho A(6;–1). Ảnh của A qua phép đối xứng trục qua Oy có toạ độ là:
Cho A(2;–1). Ảnh của A qua phép đối xứng trục qua Oy là A’, ảnh của A’ qua phép đối xứng trục qua Ox là A”có toạ độ là:
Cho đường tròn (C): – 2y – 3 = 0. Đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng trục Ox. Phương trình đường tròn (C’) là:
Cho 3 điểm A(2;3) , B(1;–4) , C(5;0) ,gọi I là trung điểm của BC, A’ là ảnh của A qua . Khi đó tọa độ của A’ là: