Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 4,065

Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

A. Giao điểm của MN với (SBD) là giao điểm của MN với BD.

B. Đường thẳng MN không cắt mặt phẳng (SBD)

C. Giao điểm của MN với (SBD) là giao điểm của MN với SI, trong đó I là giao điểm của CM với BD

Đáp án chính xác

D. Giao điểm của MN với (SBD) là M.

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD

Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN

Khi đó H  SI  (SBD); H  MN

Do đó H là giao điểm của MN và mặt phẳng (SBD)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?

Xem đáp án » 27/03/2022 20,808

Câu 2:

Có duy nhất một mặt phẳng đi qua

Xem đáp án » 27/03/2022 9,746

Câu 3:

Có một và chỉ một mặt phẳng đi qua

Xem đáp án » 27/03/2022 9,229

Câu 4:

Cho 4 điểm không cùng thuộc một mặt phẳng. Trong các phát biểu sau đây, phát biểu nào là sai?

Xem đáp án » 27/03/2022 8,682

Câu 5:

Trong các phát biểu sau, phát biểu nào đúng?

Xem đáp án » 27/03/2022 6,647

Câu 6:

Trong phát biểu sau đây, phát biểu nào đúng?

Xem đáp án » 27/03/2022 6,249

Câu 7:

Cho hình tứ diện ABCD, phát biểu nào sau đây là đúng?

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Xem đáp án » 27/03/2022 5,711

Câu 8:

Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Xem đáp án » 27/03/2022 4,729

Câu 9:

Cho hình chóp S.ABCDE, phát biều nào sau đây là đúng?

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Xem đáp án » 27/03/2022 4,149

Câu 10:

Cho hình chóp O.ABC, A’ là trung điểm của OA; các điểm B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Xem đáp án » 27/03/2022 3,961

Câu 11:

Cho ba đường thẳng a, b, c đôi một cắt nhau và không đồng phẳng. số giao điểm của ba đường thẳng là:

Xem đáp án » 27/03/2022 3,134

Câu 12:

Trong các phát biểu sau, phát biểu nào đúng?

Xem đáp án » 27/03/2022 3,090

Câu 13:

Hình biểu diễn nào sau đây vẽ đúng hình chóp?

Xem đáp án » 27/03/2022 3,073

Câu 14:

Cho hình chóp S.ABCD, đáy là hình thang ABCD, AD // BC và AD > BC, A’ là trung điểm của SA, B’ thuộc cạnh SB và không phải là trung điểm của SB. Phát biểu nào sau đây là đúng?

Hình vẽ như sau: 

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Xem đáp án » 27/03/2022 2,855

Câu 15:

Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Xem đáp án » 27/03/2022 2,711

LÝ THUYẾT

I. Khái niệm mở đầu.

1. Mặt phẳng

- Để biểu diễn mặt phẳng ta thường dùng hình bình hành hay một miền góc và ghi tên của mặt phẳng vào một góc của hình biểu diễn.

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

- Để kí hiệu mặt phẳng, ta thường dùng các chữ cái in hoa hoặc chữ cái Hi Lạp đặt trong dấu ngoặc ( ). Ví dụ: mp(P), mp(Q), mp(α), mp(β)…

2. Điểm thuộc mặt phẳng.

Cho điểm A và mặt phẳng (α).

- Khi điểm A thuộc mặt phẳng (α) ta nói A nằm trên (α) hay (α) chứa A, hay (α) đi qua A và kí hiệu là A(α).

- Khi điểm A không thuộc mặt phẳng (α) ta nói điểm A nằm ngoài (α) hay (α)  không chứa A và kí hiệu là A(α).

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

Hình trên cho ta hình biểu diễn của điểm A thuộc mặt phẳng , còn điểm B không thuộc (α).

3. Hình biểu diễn của một hình trong không gian

Để nghiên cứu hình học không gian người ta thường vẽ các hình không gian lên bảng, lên giấy. Ta gọi hình vẽ đó là hình biểu diễn của một hình không gian.

- Dưới đây là một vài hình biểu diễn của hình hộp chữ nhật.

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

Để vẽ hình biểu diễn của một hình trong không gian người ta dựa vào những quy tắc sau đây:

- Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.

- Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau.

- Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng.

- Dùng nét liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn biểu diễn cho đường bị che khuất.

II. Các tính chất thừa nhận

- Tính chất 1. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt

- Tính chất 2. Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng.

Một mặt phẳng hoàn toàn xác định nếu biết nó đi qua ba điểm không thẳng hàng. Ta kí hiệu mặt phẳng đi qua ba điểm không thẳng hàng A, B, C là mặt phẳng (ABC) hoặc mp(ABC) hoặc (ABC).

- Tính chất 3. Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.

Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (α) thì ta nói đường thẳng d nằm trong (α) hay (α) chứa d và kí hiệu là d(α) hay (α)d.

- Tính chất 4. Tồn tại bốn điểm không cùng thuộc một mặt phẳng.

Nếu có nhiều điểm cùng thuộc một mặt phẳng thì ta nói những điểm đó đồng phẳng, còn nếu không có mặt phẳng nào chứa các điểm đó thì ta nói chúng không đồng phẳng.

- Tính chất 5. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng còn có một điểm chung khác nữa.

Từ đó suy ra: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng sẽ có một đường thẳng chung đi qua điểm chung ấy.

Đường thẳng chung d của hai mặt phẳng phân biệt (α) và (β) được gọi là giao tuyến của (α) và (β) và kí hiệu là d  =  (α)(β).

- Tính chất 6. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng.

III. Cách xác định mặt phẳng

1) Mặt phẳng được hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

2) Mặt phẳng được hoàn toàn xác định khi biết nó đi qua một điểm và chứa một đường thẳng không đi qua điểm đó.

Cho đường thẳng d và điểm A không thuộc d. Khi đó điểm A và đường thẳng d xác định một mặt phẳng, kí hiệu là mp(A, d) hay (A, d) hoặc mp(d, A) hay (d, A).

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

3) Mặt phẳng được hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau.

Cho hai đường thẳng cắt nhau a và b. Khi đó hai đường thẳng a và b xác định một mặt phẳng và kí hiệu là mp(a, b) hay (a, b) hoặc mp(b, a) hay (b, a).

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

IV. Hình chóp và hình tứ diện

1. Hình chóp

Trong mp(α) cho đa giác lồi A1A2…An. Lấy điểm S nằm ngoài (α). Lần lượt nối S với các đỉnh A1, A2,..,An ta được n tam giác SA1A2, SA2A3,…, SAnA1.

Hình gồm đa giác A1A2…An và n tam giác SA1A2, SA2A3,…, SAnA1 gọi là hình chóp, kí hiệu là S.A1A2…An.

Ta gọi S là đỉnh và đa giác A1A2…An là mặt đáy. Các tam giác SA1A2, SA2A3,…, SAnA1 gọi là các mặt bên, các đoạn SA1, SA2, …, SAn là các cạnh bên; các cạnh của đa giác đáy gọi là các cạnh đáy của hình chóp.

Ta gọi hình chóp có đáy là tam giác, tứ giác, ngũ giác,.. lần lượt là hình chóp tam giác, hình chóp tứ giác, hình chóp ngũ giác…

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

2. Hình tứ diện

Cho bốn điểm A, B, C, D không đồng phẳng. Hình gồm bốn tam giác ABC, ACD, ABD và BCD gọi là hình tứ diện (hay tứ diện) và được kí hiệu là ABCD.

Các điểm A, B, C, D gọi là các đỉnh của tứ diện.

Các đoạn thẳng AB, BC, CD, DA, CA, BD gọi là các cạnh của tứ diện.

Hai cạnh không đi qua một đỉnh gọi là hai cạnh đối diện.

Các tam giác ABC, ACD, ABD, BCD gọi là các mặt của tứ diện. Đỉnh không nằm trên một mặt gọi là đỉnh đối diện với mặt đó.

Hình tứ diện có 4 mặt là các tam giác đều gọi là hình tứ diện đều.

- Chú ý. Khi nói đến tam giác ta có thể hiểu là tập hợp các điểm thuộc các cạnh hoặc cũng có thể hiểu là tập hợp các điểm thuộc các cạnh và các điểm trong của tam giác đó. Tương tự có thể hiểu như vậy đối với đa giác.

3. Một số ví dụ

Ví dụ 1.Cho hình chóp S.ABCD có đáy là hình thang ABCD (AB // CD).

Tìm giao tuyến của hai mặt phẳng:

a) (SAC) và (SBD).

b) (SAD) và (SBC).

Lời giải:

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

a) Trong mp(ABCD), gọi O là giao điểm của AC  và BD.

Ta có S là điểm chung thứ nhất của hai mặt phẳng (SAC) và (SBD).

Lại có:  OACSACOSACOBDSBDOSBD

Suy ra, O là điểm chung thứ hai của hai mặt phẳng (SAC) và (SBD).

Vậy giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO.

b) Trong mp(ABCD), gọi I là giao điểm của AD và BC.

Ta có S là điểm chung thứ nhất của hai mặt phẳng (SAD) và (SBC).

Lại có:  IADSADISADIBCSBCISBC

Suy ra, I là điểm chung thứ hai của hai mặt phẳng (SAD) và (SBC).

Vậy giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI.

Ví dụ 2. Cho tứ diện ABCD. Gọi E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD)?

Lời giải:

Bài 1: Đại cương về đường thẳng và mặt phẳng (ảnh 1)

Vì G là trọng tâm tam giác BCD, F là trung điểm của CD nên Gmp(ABF)

Ta có E là trung điểm của AB nên E(ABF).

Chọn mp phụ chứa EG là (ABF)

+ Tìm giao tuyến của mp(ABF) và mp(ACD) ta có:

A là điểm chung thứ nhất.

FABFFCDACDFACD

Suy ra F là điểm chung thứ hai .

Do đó, giao tuyến của mp(ABF) và mp(ACD) là AF.

Trong mp(ABF), kéo dài AF cắt EG tại M. Khi đó, M là giao điểm của EG và mp(ACD).

Câu hỏi mới nhất

Xem thêm »
Xem thêm »