Ba vecto không đồng phẳng nếu?
A. Giá của chúng không cùng một mặt phẳng.
B.Giá của chúng cùng thuộc một mặt phẳng.
C. Giá của chúng không cùng song song với một mặt phẳng.
D. Giá chúng cùng song song với một mặt phẳng.
Đáp án C
Theo định nghĩa sự đồng phẳng của 3 vecto: 3 vecto đồng phẳng
nếu giá của chúng cùng song song với 1 mặt phẳng.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho ba vecto . Điều kiện nào sau đây không kết luận được ba vecto đó đồng phẳng.
Tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc và đều có độ dài là l. Gọi M là trung điểm của các cạnh AB. Góc giữa hai vecto và bằng:
Cho tứ diện ABCD. Gọi M, N, P, và Q lần lượt là trung điểm của AB, BC, CD, và DA.
Vecto cùng với hai vecto nào sau đây là ba vecto đồng phẳng?
Cho tứ diện ABCD. Các điểm M và N lần lượt là trung điểm của AB và CD. Lấy hai điểm P và Q lần lượt thuộc AD và BC sao cho và , với m khác 1. Vecto bằng:
Cho tứ diện ABCD với G là trọng tâm và các điểm M, N, P, Q, I, J lần lượt là trung điểm của các cạnh AB, BC, CD, AD, AC, BD.
bằng:
Cho tứ diện ABCD. Gọi M, N, P, và Q lần lượt là trung điểm của AB, BC, CD, và DA.
Vecto cùng với hai vecto nào sau đây là ba vecto không đồng phẳng?
Cho hình lăng trụ ABC.A’B’C’ với G là trọng tâm của tam giác A’B’C’. Đặt
Vecto bằng:
Cho tứ diện ABCD với G là trọng tâm và các điểm M, N, P, Q, I, J lần lượt là trung điểm của các cạnh AB, BC, CD, AD, AC, BD.
Những vecto khác bằng nhau là:
Cho hình lăng trụ ABC.A’B’C’ với G là trọng tâm của tam giác A’B’C’. Đặt
Vecto bằng:
I. Định nghĩa và các phép toán về vecto trong không gian.
Cho đoạn thẳng AB trong không gian. Nếu ta chọn điểm đầu là A, điểm cuối là B ta có một vecto, được kí hiệu là .
1. Định nghĩa.
- Vecto trong không gian là một đoạn thẳng có hướng. Kí hiệu chỉ vecto có điểm đầu là A, điểm cuối là B. Vecto còn được kí hiệu là
- Các khái niệm liên quan đến vecto như giá của vecto, độ dài của vecto, sự cùng phương, cùng hướng của vecto, vecto – không, sự bằng nhau của hai vecto ….được định nghĩa tương tự như trong mặt phẳng.
2. Phép cộng và phép trừ vecto trong không gian,
- Phép cộng và phép trừ của hai vecto trong không gian được định nghĩa tương tự như phép cộng và phép trừ hai vecto trong mặt phẳng.
- Phép cộng vecto trong không gian cũng có các tính chất như phép cộng vecto trong mặt phẳng. Khi thực hiện phép cộng vecto trong không gian ta vẫn có thể áp dụng quy tắc ba điểm, quy tắc hình bình hành như đối với vecto trong hình học phẳng.
Ví dụ 1. Cho tứ diện ABCD. Chứng minh
Lời giải:
Áp dụng quy tắc ba điểm ta có:
Ta có:
( điều phải chứng minh).
II. Điều kiện đồng phẳng của ba vecto.
1. Khái niệm về sự đồng phẳng của ba vecto trong không gian.
Trong không gian cho ba vecto . Nếu từ một điểm O bất kì ta vẽ: thì có thể xảy ra hai trường hợp:
+ Trường hợp các đường thẳng OA; OB; OC không cùng nằm trong một mặt phẳng, khi đó ta nói rằng ba vecto không đồng phẳng.
+ Trường hợp các đường thẳng OA; OB; OC cùng nằm trong một mặt phẳng thì ta nói rằng ba vecto đồng phẳng.
Trong trường hợp này, giá của các vecto luôn luôn song song với một mặt phẳng.
- Chú ý. Việc xác định sự đồng phẳng hoặc không đồng phẳng của ba vecto nói trên không phụ thuộc vào việc chọn điểm O.
2. Định nghĩa:
Trong không gian ba vecto được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.
Ví dụ 2. Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF. Chứng minh đồng phẳng .
Lời giải :
Xét tam giác FAC có I ; K lần lượt là trung điểm của AF và FC nên IK là đường trung bình của tam giác.
IK// AC nên IK// mp ( ABCD) .
Vì BC// GF nên GF // mp( ABCD)
Ta có :
đồng phẳng.
3. Điều kiện để ba vecto đồng phẳng.
Định lí 1.
Trong không gian cho hai vecto không cùng phương và vecto . Khi đó, ba vecto đồng phẳng khi và chỉ khi có cặp số m; n sao cho . Ngoài ra, cặp số m; n là suy nhất.
- Định lí 2.
Trong không gian cho ba vecto không đồng phẳng . Khi đó, với mọi vecto ta đều tìm được một bộ ba số m, n, p sao cho . Ngoài ra, bộ ba số m; n; p là duy nhất.
Ví dụ 3. Cho hình lăng trụ ABC.A’B’C’ gọi M là trung điểm của BB’ . Đặt . Phân tích vecto theo .
Lời giải:
Áp dụng quy tắc 3 điểm và quy tắc hiệu hai vecto ta có :
( vì M là trung điểm của BB’) .
.