Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 4a, BC = 3a. Gọi I là trung điểm của AB, hai mặt phẳng (SIC) và (SIB) cùng vuông góc với (ABC), góc giữa hai mặt phẳng (SAC) và (ABC) bằng . Khoảng cách giữa hai đường thẳng SB và AC theo a là:
A.
B.
C.
D.
Đáp án A
Ta có (SIC), (SIB) cùng vuông góc với mặt phẳng (ABC) nên SI(ABC).
Dựng hình bình hành ACBE.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a, DC = a. Điểm I là trung điểm đoạn AD, mặt phẳng (SIB) và (SIC) cùng vuông góc với mặt phẳng (ABCD) . Mặt phẳng (SBC) tạo với mặt phẳng (ABCD) một góc . Tính khoảng cách từ D đến (SBC) theo a.
Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết AC = 2a; BD = 4a. Tính theo a khoảng cách giữa hai đường thẳng AD và SC.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc . Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Góc giữa mặt phẳng (SAB) và (ABCD) bằng . Khoảng cách từ B đến mặt phẳng (SCD) bằng
Cho hình chóp S.ABCD có đáy là hình bình hành với AB = 2a; ; . Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trọng tâm G của tam giác BCD, biết SG = 2a. Khoảng cách giữa hai đường thẳng AC và SB theo a là:
Cho hình chóp S.ABCD, đáy là hình thang vuông tại A và B, biết AB = BC = a, AD = 2a, SA = và SA(ABCD). Gọi M và N lần lượt là trung điểm của SB, SA. Tính khoảng cách từ M đến (NCD) theo a.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = a, SA vuông góc với mặt phẳng (ABC), góc giữa đường thẳng SC và mặt phẳng (ABC) bằng . Khoảng cách giữa hai đường thẳng SB và AC.
Cho tứ diện ABCD có DA = DB = DC tam giác ABC vuông tại A, AB = a, . Ngoài ra DBC là tam giác vuông. Tính khoảng cách giữa hai đường thẳng AM và CD với M là trung điểm của BC.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a, AA' = a. Gọi M là điểm trên đoạn AD với = 3. Gọi x là độ dài khoảng cách giữa hai đường thẳng AD', B'C và y là độ dài khoảng cách từ M đến mặt phẳng (AB'C). Tính giá trị xy.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a; AD = 2a (a > 0). Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy. Biết mặt phẳng (SAC) hợp với (ABCD) một góc . Tính khoảng cách giữa CD và SB.
I. Khoảng cách từ một điểm đến một đường thẳng, một mặt phẳng.
1. Khoảng cách từ một điểm đến một đường thẳng
Cho điểm O và đường thẳng a. Trong mặt phẳng (O; a), gọi H là hình chiếu vuông góc của O lên a. Khi đó, khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a.
Kí hiệu: d(O; a).
Ví dụ 1. Cho hình lập phương ABCD. A'B'C'D' cạnh a. Tính khoảng cách từ B tới đường thẳng DB'.
Lời giải:
Từ giả thuyết ta suy ra:
Gọi H là hình chiếu của B lên DB' ta có: BH = d (B, DB').
Xét tam giác BB'D vuông tại B ta có:
2. Khoảng cách từ một điểm đến một mặt phẳng
Cho điểm O và mặt phẳng (α). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (α). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mặt phẳng (α) và được kí hiệu là d(O; (α)).
Ví dụ 2. Cho hình chóp S. ABC có , ∆ABC là tam giác đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).
Lời giải:
Gọi D là trung điểm BC. Do tam giác ABC đều nên (1).
Trong tam giác SAD, kẻ (2).
Do (3).
Từ (2) và (3), ta suy ra AH vuông góc với (SBC) nên d(A ; (SBC))= AH.
Theo giả thiết, ta có SA = AB = a, (đường cao trong tam giác đều cạnh a).
Tam giác SAD vuông nên
II. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song.
1. Khoảng cách giữa đường thẳng và măt phẳng song song.
- Định nghĩa: Cho đường thẳng a song song với mặt phẳng (α). Khoảng cách giữa đường thẳng a và mặt phẳng (α) là khoảng cách từ một điểm bất kì thuộc a đến mặt phẳng (α).
Kí hiệu là d(a; (α)) .
2. Khoảng cách giữa hai mặt phẳng song song.
- Định nghĩa: Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia.
- Kí hiệu: d((α); (β)).
Như vậy: d((α); (β)) = d(M; (β)) = d(M’; (α)).
III. Đường vuông góc chung và khoảng cách hai đường thẳng chéo nhau.
1. Định nghĩa.
a) Đường thẳng ∆ cắt hai đường thẳng chéo nhau a, b và cùng vuông góc với mỗi đường thẳng ấy được gọi là đường vuông góc chung của a và b.
b) Nếu đường vuông góc chung ∆ cắt hai đường thẳng chéo nhau a, b lần lượt tại M; N thì độ dài đoạn thẳng MN gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b.
2. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau.
- Cho hai đường thẳng chéo nhau a và b. Gọi (β) là mặt phẳng chứa b và song song với a; a’ là hình chiếu vuông góc của a trên mặt phẳng (β).
Vì a// (β) nên a// a’. Do đó; a’ cắt b tại 1 điểm là N
Gọi (α) là mặt phẳng chứa a và a’; ∆ là đường thẳng đi qua N và vuông góc với (β). Khi đó, (α) vuông góc (β).
Như vậy.∆ nằm trong (α) nên cắt đường thẳng a tại M và cắt đường thẳng b tại N.Đồng thời, ∆ vuông góc với cả a và b.
Do đó, ∆ là đường vuông góc chung của a và b.
Ví dụ 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.
Lời giải :
Do và .
Vì tam giác SAB đều nên gọi M là trung điểm của SA thì nên BM là đoạn vuông góc chung của BC và SA.
Vậy .
3. Nhận xét
a) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.
b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.
Ví dụ 4. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA= a. Khoảng cách giữa hai đường thẳng SB và CD là
Lời giải :
Vì .
Ta có:
Vì
Suy ra: CD // (SAB) nên :
d(CD, SB) = d(CD, (SAB)) = d(D, (SAB)) = DA = a,