Thứ năm, 26/12/2024
IMG-LOGO

Câu hỏi:

20/07/2024 12,710

Cho A là tập tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập A, tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.

A. 64345000

Đáp án chính xác

B. 128590000

C. 1077500

D. 14310000

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có tất cả các số tự nhiên có 5 chữ số bắt đầu từ 10000 đến 99999 gồm 90000 số.

Do đó n(Ω) = 90000

Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 1.

Mà 90000 = 70x1285+50, nên ta chia 90000 số thành 1285 bộ 70 số liên tiếp và còn lại 50 số cuối, trong đó:

1285 bộ 70 số tự nhiên liên tiếp có 1285 số thỏa mãn yêu cầu

50 số cuối có 5 số tận cùng bằng 1 được xét trong bảng sau

99951

99961

99971

99981

99991

Chia cho 7 dư 5

Chia cho 7 dư 1

Chia cho 7 dư 4

Chia hết cho 7

Chia cho 7 dư 3

 

 

 

 

 

Vậy tất cả có 1286 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.

Gọi  là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1’ thì n(A) = 1286 

Suy ra  

Cách 2: 

Vì A là tập tất cả các số tự nhiên có 5 chữ số nên 

Số phần tử của không gian mẫu là 

Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.

Khi  có tận cùng bằng 1, do đó  với có chữ số tận cùng là 3.

Xét các trường hợp sau:

1) M là số có 4 chữ số có dạng mnpq¯  Khi đó: 

- Với m = 1, do 

+) Khi n = 4 thì p > 2 nên . Ta được 7 số thỏa mãn.

+) Khi n5 : Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p được chọn tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 50 số thỏa mãn.

- Với m2 tức là có 8 cách chọn m từ tập {2;3;4;5;6;7;8;9}. Khi đó  với mọi n,p thuộc tập hợp {0;1;2;3;4;5;6;7;8;9}. Ta được 8.10.10 = 800 số thỏa mãn.

2) M là số có 5 chữ số có dạng mnpqr¯  Khi đó:

Do mnpqr¯  14285 nên m chỉ nhận giá trị bằng 1 và n  4

- Với m = 1; n = 0,1,2,3 thì p,q là các số tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 4.10.10 = 400 số thỏa mãn.

- Với m = 1; n = 4:

+) Khi p = 0 hoặc p = 1 thì q là số tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 2.10 = 20 số thỏa mãn.

+) Khi p = 2 thì q phải thuộc tập {0;1;2;3;4;5;6;7;8}. Ta được 9 số thỏa mãn.

Vậy số phần tử của biến cố X là n(X) = 7 + 50 + 8000 + 429 = 1286

Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có hai dãy ghế đối diện nhau, mỗi dãy có 3 ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng:

Xem đáp án » 28/03/2022 26,607

Câu 2:

Cho tập S = {1;2;3;...;19;20} gồm 20 số tự nhiên từ 1 đến 20. Lấy ngẫu nhiên ba số thuộc S. Xác suất để ba số lấy được lập thành một cấp số cộng là

Xem đáp án » 28/03/2022 22,062

Câu 3:

Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên ra từ A hai số. Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.

Xem đáp án » 28/03/2022 14,168

Câu 4:

Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.

Xem đáp án » 28/03/2022 12,083

Câu 5:

Gọi S là tập tất cả các số tự nhiên có 4 chữ số đôi một khác nhau được chọn từ các chữ số 1,2,3,4,5,6,7,8,9. Lấy ngẫu nhiên một số thuộc S. Tính xác suất để lấy được một số chia hết cho 11 và tổng 4 chữ số của nó cũng chia hết cho 11.   

Xem đáp án » 28/03/2022 11,528

Câu 6:

Giải bóng chuyền quốc tế VTV Cup có 8 đội tham gia, trong đó có hai đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành hai bảng đấu, mỗi bảng 4 đội. Xác suất để hai đội của Việt Nam nằm ở hai bảng khác nhau bằng

Xem đáp án » 28/03/2022 7,076

Câu 7:

Lập một số tự nhiên có 4 chữ số. Tính xác suất để số đó có chữ số đứng trước không nhỏ hơn chữ số đứng sau.

Xem đáp án » 28/03/2022 6,570

Câu 8:

Trong chương trình giao lưu gồm có 15 người ngồi vào 15 ghế theo một hàng ngang. Giả sử người dẫn chương trình chọn ngẫu nhiên 3 người trong 15 người để giao lưu với khán giả. Xác suất để trong 3 người được chọn đó không có 2 người ngồi kề nhau là

Xem đáp án » 28/03/2022 6,383

Câu 9:

Cho tập A = {0;1;2;3;4;5;6}. Xác suất để lập được số tự nhiên gồm 5 chữ số khác nhau lấy từ các phần tử của tập A sao cho số đó chia hết cho 1,2,3 và các chữ số 1,2,3 luôn có mặt cạnh nhau là

Xem đáp án » 28/03/2022 5,974

Câu 10:

Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng abcd¯ , trong đó 1abcd9

Xem đáp án » 28/03/2022 5,086

Câu 11:

Gọi X là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ. 

Xem đáp án » 28/03/2022 4,386

Câu 12:

Cho tập X = {1;2;3;....;8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là

Xem đáp án » 28/03/2022 4,179

Câu 13:

Gọi S là tập hợp các số tự nhiên có chín chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc tập S. Xác suất để số được chọn chia hết cho 3 là

Xem đáp án » 28/03/2022 3,973

Câu 14:

Từ tập hợp tất cả các số tự nhiên có năm chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Xác suất để trong số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau là:

Xem đáp án » 28/03/2022 3,920

Câu 15:

Cho một đa giác đều 48 đỉnh. Lấy ngẫu nhiên 3 đỉnh của đa giác. Tính xác suất để tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn.

Xem đáp án » 28/03/2022 3,892

Câu hỏi mới nhất

Xem thêm »
Xem thêm »