Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A.
B.
C.
D.
Hình dáng đồ thị thể hiện a > 0. Loại đáp án A, D.
Thấy đồ thị cắt trục hoành tại điểm x=-1 nên thay vào hai đáp án B và C, chỉ có B thỏa mãn.
Chọn B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Giả sử bạn muốn mua một áo sơ mi cỡ 39 hoặc cỡ 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi có bao nhiêu sự lựa chọn (về màu áo và cỡ áo)?
Cho các số phức a, b, c, z thỏa mãn , . Gọi và lần lượt là hai nghiệm của phương trình đã cho. Tính giá trị của biểu thức
Cho hàm số với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.
Đồ thị hàm số y = -2x4+(m+3)x2+5 có duy nhất một điểm cực trị khi và chỉ khi
Gieo ngẫu nhiên hai con xúc sắc cân đối và đồng chất. Xác suất của biến cố “ Có ít nhất một con xúc sắc xuất hiện mặt một chấm” là
Cho lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật tâm O và , ; A’O vuông góc với đáy (ABCD). Cạnh bên AA’ hợp với mặt đáy (ABCD) một góc 45o. Tính theo a thể tích V của khối lăng trụ đã cho.
Cho phương trình với m là tham số thực. Có tất cả bao nhiêu giá trị của m để phương trình có đúng ba nghiệm phân biệt.
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên sau?
Cho hai số thực b và c (c > 0). Kí hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm phức của phương trình . Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).
Cho hình nón đỉnh S có bán kính đáy , góc ở đỉnh bằng 60o. Diện tích xung quanh của hình nón bằng: