Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa 2 đường thẳng AD và SC là
A.
B.
C.
D.
Đáp án C
Gọi H, M lần lượt là trung điểm của AD, BC.
AD // (SBC) Þ d(AD, SC) = d(AD,(SBC)) = d(H,(SBC))
Trong tam giác SHM kẻ HK ^ SM tại K
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai đường thẳng a, b song song với nhau. Trên a ta chọn 10 điểm phân biệt, trên b ta chọn 11 điểm phân biệt. Có bao nhiêu hình thang được tạo thành từ 21 điểm đã cho ở trên.
Cho hàm số . Gọi lần lượt là khoảng cách từ 2 điểm cực đại và cực tiểu của đồ thị hàm số đến trục hoành. Khi đó tỉ số bằng
Một nhà sản xuất cần thiết kế một thùng sơn dạng hình trụ có nắp đậy với dug tích là 20 lít. Cần phải thiết kế thùng sơn đó với bán kính nắp đậy là bao nhiêu (cm) để nhà sản xuất tiết kiệm được vật liệu nhất?
Cho đồ thị hàm số đạt cực đại tại và đạt cực tiểu tại . Tính giá trị của biểu thức
Ông Minh gửi gói tiết kiệm tích lũy cho con tại một ngân hàng với số tiền tiết kiệm ban đầu là 200 triệu đồng với lãi suất 7%/năm. Từ năm thứ hai trở đi, mỗi năm ông gửi thêm vào tài khoản với số tiền 20 triệu đồng. Ông không rút lãi định kì hàng năm. Biết rằng, lãi suất định kì hàng năm không thay đổi. Hỏi sau 10 năm, số tiền ông Minh nhận về cả gốc lẫn lãi là bao nhiêu? (làm tròn đến 3 chữ số thập phân)
Tính diện tích hình phẳng giới hạn bởi các đường , trục hoành, đường thẳng x = 0 và x = 1
Cho hình lập phương . Gọi O, O’ lần lượt là tâm của hai hình vuông ABCD và . Gọi là thể tích của khối trụ xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và , là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông . Tỷ số thể tích là
Cho hình vuông ABCD có cạnh a, M là trung điểm của AD, xét khối tròn xoay sinh bởi tam giác CDM (cùng các điểm trong của nó) khi quay quanh đường AB. Thể tích của khối tròn xoay đó bằng