Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA và SC. Mặt phẳng (BMN) cắt SD tại điểm P. Đặt . Tìm t.
A.
B.
C.
D.
Chọn C
Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD.
Gọi I là gioa điểm của BP và MN. Khi đó
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong một toa tàu có 2 ghế đối diện nhau, mỗi ghế có 4 chỗ ngồi. Trong tổng số 8 hành khách, có 3 người muốn ngồi nhìn theo hướng tàu chạy, 2 người mốn ngồi theo hướng ngược lại và 3 người còn lại không có yêu cầu gì. Hỏi có bao nhiêu cách xếp chỗ ngồi để thỏa mãn các yêu cầu của hành khách?
Viết phương trình mặt phẳng (P) tiếp xúc với mặt cầu
Và song song với hai đường thẳng và
Cho hình chóp tam giác đều S.ABC có AB = a, cạnh bên SA tạo với đáy một góc . Một hình nón có đỉnh là S, đáy là hình tròn nội tiếp tam giác ABC. Tính diện tích xung quanh của hình nón đã cho.
Trong không gian, cho tam giác ABC là tam giác đều cạnh a, gọi H là trung điểm của cạnh BC. Tính thể tích V của khối nón nhận được khi quay tam giác ABC xung quanh trục AH.
Cho hình trụ có chiều cao bán kính đáy . Tính diện tích S của mặt cầu ngoại tiếp hình trụ đã cho.
Cho tứ diện ABCD. Xét điểm M thay đổi là một điểm trong của tứ diện. Gọi lần lượt là giao điểm của các đường thẳng AM, BM, CM, DM với các mặt phẳng (BCD), (ACD), (ABD), (ABC). Giá trị nhỏ nhất của biểu thức bằng
Một vật chuyển động với vận tốc 10 (m/s) thì tăng tốc với gia tốc . Tính quãng đường vật di chuyển trong khoảng thời gian 10 giây, kể từ lúc bắt đầu tăng tốc.
Điểm biểu diễn các số phức với nằm trên đường thẳng nào trong các đường thẳng sau đây?
Cho mặt phẳng (P) đi qua ba điểm A(0;1;0), B(-2;0;0), C(0;0;3). Phương trình của mặt phẳng (P) là:
Viết phương trình mặt câu (S) có tâm I nằm trên tia Oy, bán kính R = 4 và tiếp xúc với mặt phẳng (Oxz).