IMG-LOGO

Câu hỏi:

05/07/2024 139

Cho hình chóp S.ABC có AB=AC=4, BC=2, SA=43, SAB=SAC=300. Gọi G1;G2;G3lần lượt là trọng tâm các tam giác ΔSBC,ΔSCA,ΔSAB và T đối xứng với S qua mặt phẳng (ABC). Thể tích khối chóp TG1G2G3bằng \[\frac{a}{b}\], với a,bab tối giản. Tính giá trị của biểu thức P=2ab.

A.3

B. (VDC): Cho hình chóp có , , , . Gọi lần lượt là trọng tâm các tam giác và T đối xứng với S qua mặt phẳng . Thể tích khối chóp bằng \[\frac{a}{b}\], với và tối giản. Tính giá trị của biểu thứ (ảnh 62)

C.5

Đáp án chính xác

D.1

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Phương pháp giải:

- Gọi M là trung điểm của BC, chứng minh BC(SAM), từ đó xác định chiều cao hạ từ đỉnh S của khối chóp bằng cách sử dụng định lí: Cho hai mặt phẳng vuông góc, đường thẳng nằm trong mặt này và vuông góc với giao tuyến thì sẽ vuông góc với mặt phẳng kia.

- Xác định tỉ số \[\frac{{d\left( {T;\left( {{G_1}{G_2}{G_3}} \right)} \right)}}{{d\left( {S;\left( {ABC} \right)} \right)}};{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{{{S_{\Delta {G_1}{G_2}{G_3}}}}}{{{S_{\Delta ABC}}}}\], từ đó suy ra tỉ số VT.G1G2G3VS.ABC.

- Tính chiều cao của khối chóp, chính là chiều cao của tam giác SAM nhờ vào diện tích tam giác SAM, muốn tínhSΔSAM ta sử dụng định lí Pytago tính từng cạnh của tam giác sau đó áp dụng công thức He-rong SΔSAM=p(pSA)(pAM)(pSM)với p là nửa chu vi tam giác SAM.

- Tính VS.ABC, từ đó tính VT.G1G2G3, suy ra \[a,{\mkern 1mu} {\mkern 1mu} b\] và tính P.

Giải chi tiết:

 (VDC): Cho hình chóp có , , , . Gọi lần lượt là trọng tâm các tam giác và T đối xứng với S qua mặt phẳng . Thể tích khối chóp bằng \[\frac{a}{b}\], với và tối giản. Tính giá trị của biểu thứ (ảnh 24)

Xét tam giác SAB và ΔSACcó:

SA chung

\[AB = AC{\mkern 1mu} {\mkern 1mu} \left( {gt} \right)\]

SAB=SAC=300(gt)

ΔSAB=ΔSAC(c.g.c)

SB=SC (2 cạnh tương ứng) ΔSBC cân tại S.

Gọi M,N lần lượt là trung điểm của BC,AC ta có

{SMBCAMBCBC(SAM).

Trong (SAM) kẻ SHAM(HAM) ta có: {SHAMSHBC(BC(SAM))SH(ABC).

Dễ thấy (G1G2G3)//(ABC) và d(S;(G1G2G3))d(S;(ABC))=SG1SM=23

d(S;(G1G2G3))=23SH.

\[ \Rightarrow d\left( {T;\left( {{G_1}{G_2}{G_3}} \right)} \right) = 2SH - \frac{2}{3}SH = \frac{4}{3}SH\].

Lại có ΔG1G2G3 đồng dạng với ΔABC theo tỉ số k=G1G2AB=G1G2MN.MNAB=23.12=13.

SΔG1G2G3=19SΔABC

VT.G1G2G3VS.ABC=d(T;(G1G2G3))d(S;(ABC)).SΔG1G2G3SΔABC=43.19=427

 (VDC): Cho hình chóp có , , , . Gọi lần lượt là trọng tâm các tam giác và T đối xứng với S qua mặt phẳng . Thể tích khối chóp bằng \[\frac{a}{b}\], với và tối giản. Tính giá trị của biểu thứ (ảnh 46)

Xét tam giác vuông \[ABM\] có: AM=AB2BM2=4212=15.

SΔABC=12AM.BC=12.15.2=15.

Xét tam giác SAB có:

SB2=SA2+AB22SA.AB.cosSAB

=(43)2+422.43.4.cos300=16

\[ \Rightarrow SB = 4 = SC\]

Xét tam giác vuông \[SBM\] có SM=SB2BM2=4212=15.

Gọi  (VDC): Cho hình chóp có , , , . Gọi lần lượt là trọng tâm các tam giác và T đối xứng với S qua mặt phẳng . Thể tích khối chóp bằng \[\frac{a}{b}\], với và tối giản. Tính giá trị của biểu thứ (ảnh 53)là nửa chu vi tam giác SAM ta có p=SA+AM+SM2=43+15+152=23+15.

SΔSAM=p(pSA)(pAM)(pSM)=36=6.

Lại có SΔSAM=12SH.AMSH=2SΔSAMAM=2.615=1215.

VS.ABC=13SH.SΔABC=13.1215.15=4.

VT.G1G2G3=427VS.ABC=427.4=1627.

a=16;b=27. Vậy P=2ab=2.1627=5.

Đáp án C.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x22x+3m)có tập xác định là \[\mathbb{R}\].

Xem đáp án » 16/05/2022 247

Câu 2:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số y=2x4xm có tiệm cận đứng.

Xem đáp án » 16/05/2022 228

Câu 3:

Cho giới hạn limx4x2+3x4x2+4x=ab, với \[\frac{a}{b}\] là phân số tối giản. Tính giá trị của biểu thức a2b2.

Xem đáp án » 16/05/2022 197

Câu 4:

Trên giá sách có 6 quyển sách Toán khác nhau, 7 quyển sách Văn khác nhau và 8 quyển sách Tiếng Anh khác nhau. Có bao nhiêu cách lấy 2 quyển sách thuộc 2 môn khác nhau?

Xem đáp án » 16/05/2022 174

Câu 5:

Cho đa giác lồi A1A2...A20. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành 1 tam giác không có cạnh nào là cạnh của đa giác đã cho bằng:

Xem đáp án » 16/05/2022 174

Câu 6:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m[2021;2021] để hàm số g(x)=f(x+m) nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 8)

Xem đáp án » 16/05/2022 172

Câu 7:

Thể tích khối cầu có bán kính r là:

Xem đáp án » 16/05/2022 155

Câu 8:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số y=|3x48x36x2+24xm|có 7 điểm cực trị. Tính tổng các phần tử của S.

Xem đáp án » 16/05/2022 147

Câu 9:

Cho hàm số y=x42mx2+m, có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn (γ):(x1)2+(y1)2=4 tạo thành một dây cung có độ dài nhỏ nhất.

Xem đáp án » 16/05/2022 145

Câu 10:

Tìm tập nghiệm S của phương trình (20202021)4x=(20212020)2x6.

Xem đáp án » 16/05/2022 135

Câu 11:

Cho hình chóp \[S.ABCD\] có đáy ABCD là hình vuông cạnh a, SD=3a2, hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp SABCD.

Xem đáp án » 16/05/2022 132

Câu 12:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và SO=a. Khoảng cách giữa SC và AB bằng:

Xem đáp án » 16/05/2022 130

Câu 13:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:

Xem đáp án » 16/05/2022 121

Câu 14:

Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a. góc giữa cạnh bên và mặt đáy bằng 600.Tính thể tích của khối nón có đỉnh là S và đáy là đường tròn ngoại tiếp ΔABC.

Xem đáp án » 16/05/2022 120

Câu 15:

Cho dãy số \[\left( {{u_n}} \right)\] là cấp số nhân có số hạng đầu u1=1, công bội q=2. Tổng ba số hạng đầu của cấp số nhân là:

Xem đáp án » 16/05/2022 116

Câu hỏi mới nhất

Xem thêm »
Xem thêm »