Thứ sáu, 04/04/2025
IMG-LOGO

Câu hỏi:

08/07/2024 142

Cho hình chóp tứ giác \(S.ABCD\) có \(SA = x\) và tất cả các cạnh còn lại đều bằng 1. Khi thể tích khối chóp \(S.ABCD\) đạt giá trị lớn nhất thì \(x\) nhận giá trị nào sau đây?

A.\(x = \frac{{\sqrt {35} }}{7}\)

B.\(x = 1.\)

C.\(x = \frac{9}{4}\)

D. \(x = \frac{{\sqrt {34} }}{7}\)

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp tứ giác \(S.ABCD\) có \(SA = x\) và tất cả các cạnh còn lại đều bằng 1. Khi thể tích khối chóp \(S.ABCD\) đạt giá trị lớn nhất thì \(x\) nhận giá trị nào sau đây? (ảnh 1)

Gọi

\(H\)là tâm đường tròn ngoại tiếp tam giác \(BCD,\) do \(SB = SC = SD\) nên \(SH\) là trục của đường tròn ngoại tiếp tam giác \(BCD,\) suy ra \(SH \bot \left( {ABCD} \right).\)

Do tứ giác \(ABCD\) là hình thoi nên \(AC\) là đường trung trực của đường thẳng \(BD\) do đó \(H \in AC.\)

Đặt \(\alpha = \widehat {ACD},0 < \alpha < \frac{\pi }{2} \Rightarrow \widehat {BCD} = 2\alpha ,\) suy ra \({S_{ABCD}} = 2{S_{BCD}} = BC.CD.\sin \widehat {BCD} = \sin 2\alpha .\)

Gọi \(K\) là trung điểm của \(CD \Rightarrow CD \bot SK,\) mà \(CD \bot SH\) suy ra \(CD \bot HK.\)

\(HC = \frac{{CK}}{{\cos \alpha }} = \frac{1}{{2\cos \alpha }},SH = \sqrt {S{C^2} - H{C^2}} = \sqrt {1 - \frac{1}{{4{{\cos }^2}\alpha }}} = \frac{{\sqrt {4{{\cos }^2}\alpha - 1} }}{{2\cos \alpha }}\).

Thể tích khối chóp \(S.ABCD\) là \(V = \frac{1}{3}SH.{S_{ABCD}} = \frac{1}{3}\frac{{\sqrt {4\cos \alpha - 1} }}{{2\cos \alpha }}.\sin 2\alpha = \frac{1}{3}\sin \alpha \sqrt {4{{\cos }^2}\alpha - 1} \)

Do đó \(V = \frac{1}{6}\left( {2\sin \alpha } \right)\sqrt {4{{\cos }^2}\alpha - 1} \le \frac{1}{6}\frac{{4{{\sin }^2}\alpha + 4{{\cos }^2}\alpha - 1}}{2} = \frac{1}{4}.\)

Dấu “=” xảy ra khi \(2\sin \alpha = \sqrt {4{{\cos }^2}\alpha - 1} \Leftrightarrow 4{\sin ^2}\alpha = 4{\cos ^2}\alpha - 1 \Leftrightarrow {\cos ^2}\alpha = \frac{5}{8}\)

\( \Leftrightarrow \cos \alpha = \frac{{\sqrt {10} }}{4}.\) Khi đó \(HC = \frac{2}{{\sqrt {10} }},SH = \frac{{\sqrt {15} }}{5}.\)

Gọi \(O = AC \cap BD,\) suy ra \(AC = 2OC = 2CD.\cos \alpha = \frac{{\sqrt {10} }}{2}.\)

\(AH = AC - HC = \frac{{\sqrt {10} }}{2} - \frac{2}{{\sqrt {10} }} = \frac{3}{{\sqrt {10} }}.\)

Vậy \(x = SA = \sqrt {S{H^2} + A{H^2}} = \sqrt {\frac{3}{5} + \frac{9}{{10}}} = \frac{{\sqrt 6 }}{2}.\)

Đáp án D.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.  Trong đoạn \(\left[ { - 20;20} \right]\), có bao nhiêu số nguyên \(m\) để hàm số \(y = \left| {10f\left( {x - m} \right) - \frac{{ (ảnh 1)

Trong đoạn \(\left[ { - 20;20} \right]\), có bao nhiêu số nguyên \(m\) để hàm số \(y = \left| {10f\left( {x - m} \right) - \frac{{11}}{3}{m^2} + \frac{{37}}{3}m} \right|\) có 3 điểm cực trị?

Xem đáp án » 16/05/2022 1,228

Câu 2:

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên dưới.

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên dưới.Hàm số \(g\left( x \right) = f\left( {3 - 4x} \right) - 8{x^2} + 12x + 2020\) nghịch biến trên  (ảnh 1)

Hàm số \(g\left( x \right) = f\left( {3 - 4x} \right) - 8{x^2} + 12x + 2020\) nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 16/05/2022 764

Câu 3:

Cho hình hộp \(ABCD.A'B'C'D'\) có đáy là hình chữ nhật, \(AB = \sqrt 3 ,AD = \sqrt 7 .\) Hai mặt bên \(\left( {ABB'A'} \right)\) và \(\left( {ADD'A'} \right)\) lần lượt tạo với đáy góc \({45^0}\) và \({60^0},\) biết cạnh bên bằng 1. Tính thể tích khối hộp.

Xem đáp án » 16/05/2022 458

Câu 4:

Cho biết đồ thị hàm số \(y = {x^4} - 2m{x^2} - 2{m^2} + {m^4}\) có 3 điểm cực trị \(A,B,C\) cùng với điểm \(D\left( {0; - 3} \right)\) là 4 đỉnh của một hình thoi. Gọi \(S\) là tổng các giá trị \(m\) thỏa mãn đề bài thì \(S\) thuộc khoảng nào sau đây

Xem đáp án » 16/05/2022 244

Câu 5:

Một vật có phương trình chuyển động \(S\left( t \right) = 4,9{t^2};\) trong đó t tính bằng (s), S(t) tính bắng mét (m). Vận tốc của vật tại thời điểm t=6s bằng

Xem đáp án » 16/05/2022 225

Câu 6:

Tìm số hạng không chứa \(x\) trong khai triển \({\left( {x - \frac{2}{x}} \right)^n},n \in {\mathbb{N}^*}\) biết \(C_n^1 - 2.2.C_n^2 + {3.2^2}.C_n^3 - {4.2^3}.C_n^4 + {5.2^4}C_n^5 + ... + {\left( { - 1} \right)^n}.n{.2^{n - 1}}C_n^n = - 2022\)

Xem đáp án » 16/05/2022 197

Câu 7:

Đồ thị hàm số \(y = \frac{{{x^2} - 3x + 2}}{{{x^3} - x}}\) có mấy đường tiệm cận?

Xem đáp án » 16/05/2022 190

Câu 8:

Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên khoảng:

Xem đáp án » 16/05/2022 179

Câu 9:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,AD = a\sqrt 2 ,\) đường thẳng \(SA\) vuông góc với \(mp\left( {ABCD} \right).\) Góc giữa \(SC\) và \(mp\left( {ABCD} \right)\) bằng \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\)

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,AD = a\sqrt 2 ,\) đường thẳng \(SA\) vuông góc với \(mp\left( {ABCD} \right).\) Góc giữa \(SC\) và \(mp\left( {ABCD} \right (ảnh 1)

Xem đáp án » 16/05/2022 158

Câu 10:

Cho tứ diện đều \(ABCD\) có cạnh bằng 1, gọi \(M\) là trung điểm \(AD\) và \(N\) trên cạnh \(BC\) sao cho \(BN = 2NC.\) Khoảng cách giữa hai đường thẳng \(MN\) và \(CD\) là

Xem đáp án » 16/05/2022 147

Câu 11:

Đồ thị hàm số \(y = \frac{{x - 2}}{{x + 4}}\) cắt trục tung tại điểm có tung độ bằng

Xem đáp án » 16/05/2022 147

Câu 12:

Xét phép thử T: “Gieo một con súc sắc cân đối và đồng chất” và biến cố A liên quan đến phép thử: “Mặt lẻ chấm xuất hiện”. Chọn khẳng định sai trong những khẳng định dưới đây:

Xem đáp án » 16/05/2022 147

Câu 13:

Mệnh đề nào sau đây sai:

Xem đáp án » 16/05/2022 142

Câu 14:

Trong các phương trình dưới đây, phương trình nào có tập nghiệm là: \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\)

Xem đáp án » 16/05/2022 135

Câu 15:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên dưới.

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên dưới.Khi đó (ảnh 1)

Khi đó

Xem đáp án » 16/05/2022 124

Câu hỏi mới nhất

Xem thêm »
Xem thêm »